論文の概要: Optimizing the Optimal Weighted Average: Efficient Distributed Sparse Classification
- arxiv url: http://arxiv.org/abs/2406.01753v1
- Date: Mon, 3 Jun 2024 19:43:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 21:02:09.587255
- Title: Optimizing the Optimal Weighted Average: Efficient Distributed Sparse Classification
- Title(参考訳): 最適重み付き平均値の最適化:効率的な分散スパース分類
- Authors: Fred Lu, Ryan R. Curtin, Edward Raff, Francis Ferraro, James Holt,
- Abstract要約: ACOWAは、小さなランタイムの増加とともに、顕著に優れた近似品質を達成するための追加の通信を可能にする。
その結果、ACOWAは経験的リスク最小化に忠実で、他の分散アルゴリズムよりもかなり高い精度で解が得られることがわかった。
- 参考スコア(独自算出の注目度): 50.406127962933915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While distributed training is often viewed as a solution to optimizing linear models on increasingly large datasets, inter-machine communication costs of popular distributed approaches can dominate as data dimensionality increases. Recent work on non-interactive algorithms shows that approximate solutions for linear models can be obtained efficiently with only a single round of communication among machines. However, this approximation often degenerates as the number of machines increases. In this paper, building on the recent optimal weighted average method, we introduce a new technique, ACOWA, that allows an extra round of communication to achieve noticeably better approximation quality with minor runtime increases. Results show that for sparse distributed logistic regression, ACOWA obtains solutions that are more faithful to the empirical risk minimizer and attain substantially higher accuracy than other distributed algorithms.
- Abstract(参考訳): 分散トレーニングは、ますます大規模なデータセット上で線形モデルを最適化するソリューションとしてしばしば見なされるが、一般的な分散アプローチのマシン間通信コストは、データ次元が増加するにつれて支配的になる。
最近の非インタラクティブアルゴリズムの研究は、機械間の1ラウンドの通信だけで線形モデルの近似解を効率的に得ることができることを示している。
しかし、この近似はしばしば機械の数が増えるにつれて縮退する。
本稿では,近年の最適重み付け平均法に基づく新しい手法であるACOWAを導入する。
その結果、分散ロジスティック回帰では、ACOWAは経験的リスク最小化に忠実で、他の分散アルゴリズムよりもかなり高い精度で解が得られることがわかった。
関連論文リスト
- High-Dimensional Distributed Sparse Classification with Scalable Communication-Efficient Global Updates [50.406127962933915]
我々はコミュニケーション効率のよい分散ロジスティック回帰モデルを学ぶことができる問題に対する解決策を開発する。
実験では、いくつかの分散更新ステップだけで、分散アルゴリズムよりも精度が大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-07-08T19:34:39Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
本稿では,分布マッチングに基づく新しいデータセット凝縮法を提案する。
提案手法は,計算資源の少ない従来の最適化指向手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-19T04:07:33Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Learning Distributionally Robust Models at Scale via Composite
Optimization [45.47760229170775]
DROの異なる変種が、スケーラブルな方法を提供する有限サム合成最適化の単なる例であることを示す。
また、非常に大規模なデータセットからロバストなモデルを学ぶために、先行技術に関して提案アルゴリズムの有効性を示す実験結果も提供する。
論文 参考訳(メタデータ) (2022-03-17T20:47:42Z) - On Accelerating Distributed Convex Optimizations [0.0]
本稿では,分散マルチエージェント凸最適化問題について検討する。
提案アルゴリズムは, 従来の勾配偏光法よりも収束率を向上し, 線形収束することを示す。
実ロジスティック回帰問題の解法として,従来の分散アルゴリズムと比較して,アルゴリズムの性能が優れていることを示す。
論文 参考訳(メタデータ) (2021-08-19T13:19:54Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z) - Progressive Batching for Efficient Non-linear Least Squares [31.082253632197023]
ガウス・ニュートンの基本的な改良のほとんどは、基礎となる問題構造の空間性を保証するか、あるいは活用して計算速度を上げることである。
我々の研究は、機械学習と統計の両方からアイデアを借用し、収束を保証するとともに、必要な計算量を大幅に削減する非線形最小二乗に対するアプローチを提案する。
論文 参考訳(メタデータ) (2020-10-21T13:00:04Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Communication-efficient Variance-reduced Stochastic Gradient Descent [0.0]
通信効率のよい分散最適化の問題を考える。
特に、分散還元勾配に着目し、通信効率を高めるための新しいアプローチを提案する。
実データセットの包括的理論的および数値解析により、我々のアルゴリズムは通信の複雑さを95%減らし、ほとんど顕著なペナルティを伴わないことが明らかとなった。
論文 参考訳(メタデータ) (2020-03-10T13:22:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。