From Latent to Lucid: Transforming Knowledge Graph Embeddings into Interpretable Structures with KGEPrisma
- URL: http://arxiv.org/abs/2406.01759v2
- Date: Wed, 07 May 2025 12:15:25 GMT
- Title: From Latent to Lucid: Transforming Knowledge Graph Embeddings into Interpretable Structures with KGEPrisma
- Authors: Christoph Wehner, Chrysa Iliopoulou, Ute Schmid, Tarek R. Besold,
- Abstract summary: We introduce a post-hoc and local explainable AI method tailored for Knowledge Graph Embedding (KGE) models.<n>Our approach directly decodes the latent representations encoded by KGE models, leveraging the smoothness of the embeddings.<n>By identifying symbolic structures, in the form of triples, within the subgraph neighborhoods of similarly embedded entities, our method translates these insights into human-understandable symbolic rules and facts.
- Score: 4.2427000279700025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a post-hoc and local explainable AI method tailored for Knowledge Graph Embedding (KGE) models. These models are essential to Knowledge Graph Completion yet criticized for their opaque, black-box nature. Despite their significant success in capturing the semantics of knowledge graphs through high-dimensional latent representations, their inherent complexity poses substantial challenges to explainability. While existing methods like Kelpie use resource-intensive perturbation to explain KGE models, our approach directly decodes the latent representations encoded by KGE models, leveraging the smoothness of the embeddings, which follows the principle that similar embeddings reflect similar behaviours within the Knowledge Graph, meaning that nodes are similarly embedded because their graph neighbourhood looks similar. This principle is commonly referred to as smoothness. By identifying symbolic structures, in the form of triples, within the subgraph neighborhoods of similarly embedded entities, our method identifies the statistical regularities on which the models rely and translates these insights into human-understandable symbolic rules and facts. This bridges the gap between the abstract representations of KGE models and their predictive outputs, offering clear, interpretable insights. Key contributions include a novel post-hoc and local explainable AI method for KGE models that provides immediate, faithful explanations without retraining, facilitating real-time application on large-scale knowledge graphs. The method's flexibility enables the generation of rule-based, instance-based, and analogy-based explanations, meeting diverse user needs. Extensive evaluations show the effectiveness of our approach in delivering faithful and well-localized explanations, enhancing the transparency and trustworthiness of KGE models.
Related papers
- Embedding Method for Knowledge Graph with Densely Defined Ontology [0.0]
This study proposes a KGE model, TransU, designed for knowledge graphs with well-defined models that incorporate relationships between properties.<n>We present experimental results using a standard dataset and a practical dataset.
arXiv Detail & Related papers (2025-04-02T14:43:47Z) - Knowledge Graph Enhanced Generative Multi-modal Models for Class-Incremental Learning [51.0864247376786]
We introduce a Knowledge Graph Enhanced Generative Multi-modal model (KG-GMM) that builds an evolving knowledge graph throughout the learning process.
During testing, we propose a Knowledge Graph Augmented Inference method that locates specific categories by analyzing relationships within the generated text.
arXiv Detail & Related papers (2025-03-24T07:20:43Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
We propose a Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing.
The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge.
It first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations.
arXiv Detail & Related papers (2024-09-09T12:56:02Z) - CL4KGE: A Curriculum Learning Method for Knowledge Graph Embedding [36.47838597326351]
We define a metric Z-counts to measure the difficulty of training each triple in knowledge graphs.
Based on this metric, we propose textbfCL4KGE, an efficient textbfCurriculum textbfLearning based training strategy.
arXiv Detail & Related papers (2024-08-27T07:51:26Z) - Structure Your Data: Towards Semantic Graph Counterfactuals [1.8817715864806608]
Counterfactual explanations (CEs) based on concepts are explanations that consider alternative scenarios to understand which high-level semantic features contributed to model predictions.
In this work, we propose CEs based on the semantic graphs accompanying input data to achieve more descriptive, accurate, and human-aligned explanations.
arXiv Detail & Related papers (2024-03-11T08:40:37Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - Path-based Explanation for Knowledge Graph Completion [17.541247786437484]
Proper explanations for the results of GNN-based Knowledge Graph Completion models increase model transparency.
Existing practices for explaining KGC tasks rely on instance/subgraph-based approaches.
We propose Power-Link, the first path-based KGC explainer that explores GNN-based models.
arXiv Detail & Related papers (2024-01-04T14:19:37Z) - Extending Transductive Knowledge Graph Embedding Models for Inductive
Logical Relational Inference [0.5439020425819]
This work bridges the gap between traditional transductive knowledge graph embedding approaches and more recent inductive relation prediction models.
We introduce a generalized form of harmonic extension which leverages representations learned through transductive embedding methods to infer representations of new entities introduced at inference time as in the inductive setting.
In experiments on a number of large-scale knowledge graph embedding benchmarks, we find that this approach for extending the functionality of transductive knowledge graph embedding models is competitive with--and in some scenarios outperforms--several state-of-the-art models derived explicitly for such inductive tasks.
arXiv Detail & Related papers (2023-09-07T15:24:18Z) - A Comprehensive Study on Knowledge Graph Embedding over Relational
Patterns Based on Rule Learning [49.09125100268454]
Knowledge Graph Embedding (KGE) has proven to be an effective approach to solving the Knowledge Completion Graph (KGC) task.
Relational patterns are an important factor in the performance of KGE models.
We introduce a training-free method to enhance KGE models' performance over various relational patterns.
arXiv Detail & Related papers (2023-08-15T17:30:57Z) - Sample-Efficient Learning of Novel Visual Concepts [7.398195748292981]
State-of-the-art deep learning models struggle to recognize novel objects in a few-shot setting.
We show that incorporating a symbolic knowledge graph into a state-of-the-art recognition model enables a new approach for effective few-shot classification.
arXiv Detail & Related papers (2023-06-15T20:24:30Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
We propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP) for data-efficient knowledge graph construction.
RAP can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample.
arXiv Detail & Related papers (2022-10-19T16:40:28Z) - Joint Language Semantic and Structure Embedding for Knowledge Graph
Completion [66.15933600765835]
We propose to jointly embed the semantics in the natural language description of the knowledge triplets with their structure information.
Our method embeds knowledge graphs for the completion task via fine-tuning pre-trained language models.
Our experiments on a variety of knowledge graph benchmarks have demonstrated the state-of-the-art performance of our method.
arXiv Detail & Related papers (2022-09-19T02:41:02Z) - Repurposing Knowledge Graph Embeddings for Triple Representation via
Weak Supervision [77.34726150561087]
Current methods learn triple embeddings from scratch without utilizing entity and predicate embeddings from pre-trained models.
We develop a method for automatically sampling triples from a knowledge graph and estimating their pairwise similarities from pre-trained embedding models.
These pairwise similarity scores are then fed to a Siamese-like neural architecture to fine-tune triple representations.
arXiv Detail & Related papers (2022-08-22T14:07:08Z) - ExpressivE: A Spatio-Functional Embedding For Knowledge Graph Completion [78.8942067357231]
ExpressivE embeds pairs of entities as points and relations as hyper-parallelograms in the virtual triple space.
We show that ExpressivE is competitive with state-of-the-art KGEs and even significantly outperforms them on W18RR.
arXiv Detail & Related papers (2022-06-08T23:34:39Z) - Knowledge Sheaves: A Sheaf-Theoretic Framework for Knowledge Graph
Embedding [1.5469452301122175]
We show that knowledge graph embedding is naturally expressed in the topological and categorical language of textitcellular sheaves
A knowledge graph embedding can be described as an approximate global section of an appropriate textitknowledge sheaf over the graph.
The resulting embeddings can be easily adapted for reasoning over composite relations without special training.
arXiv Detail & Related papers (2021-10-07T20:54:40Z) - LightCAKE: A Lightweight Framework for Context-Aware Knowledge Graph
Embedding [3.7497588668920048]
We propose a lightweight framework named LightCAKE for context-aware KGE.
LightCAKE uses an iterative aggregation strategy to integrate the context information in multi-hop into the entity/relation embeddings.
Experiments on public benchmarks demonstrate the efficiency and effectiveness of our framework.
arXiv Detail & Related papers (2021-02-22T08:23:22Z) - RelWalk A Latent Variable Model Approach to Knowledge Graph Embedding [50.010601631982425]
This paper extends the random walk model (Arora et al., 2016a) of word embeddings to Knowledge Graph Embeddings (KGEs)
We derive a scoring function that evaluates the strength of a relation R between two entities h (head) and t (tail)
We propose a learning objective motivated by the theoretical analysis to learn KGEs from a given knowledge graph.
arXiv Detail & Related papers (2021-01-25T13:31:29Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z) - Quantifying Challenges in the Application of Graph Representation
Learning [0.0]
We provide an application oriented perspective to a set of popular embedding approaches.
We evaluate their representational power with respect to real-world graph properties.
Our results suggest that "one-to-fit-all" GRL approaches are hard to define in real-world scenarios.
arXiv Detail & Related papers (2020-06-18T03:19:43Z) - Knowledge Graph Embeddings and Explainable AI [29.205234615756822]
We introduce the concept of knowledge graph embeddings by explaining what they are, how they can be generated and how they can be evaluated.
We summarize the state-of-the-art in this field by describing the approaches that have been introduced to represent knowledge in the vector space.
In relation to knowledge representation, we consider the problem of explainability, and discuss models and methods for explaining predictions obtained via knowledge graph embeddings.
arXiv Detail & Related papers (2020-04-30T14:55:09Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
We study question answering over a dynamic textual environment.
We develop a graph neural network over the constructed graph, and train the model in an end-to-end manner.
arXiv Detail & Related papers (2020-04-25T04:53:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.