論文の概要: Multi-agent assignment via state augmented reinforcement learning
- arxiv url: http://arxiv.org/abs/2406.01782v1
- Date: Mon, 3 Jun 2024 20:56:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 20:52:25.158857
- Title: Multi-agent assignment via state augmented reinforcement learning
- Title(参考訳): 状態強化学習によるマルチエージェントの課題
- Authors: Leopoldo Agorio, Sean Van Alen, Miguel Calvo-Fullana, Santiago Paternain, Juan Andres Bazerque,
- Abstract要約: 本稿では,制約付き強化学習を通じて,マルチエージェント配置問題の矛盾する要件に対処する。
我々は,2変数の振動をエージェントに利用してタスク間の交互化を行う状態拡張アプローチを再帰する。
- 参考スコア(独自算出の注目度): 3.4992411324493515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the conflicting requirements of a multi-agent assignment problem through constrained reinforcement learning, emphasizing the inadequacy of standard regularization techniques for this purpose. Instead, we recur to a state augmentation approach in which the oscillation of dual variables is exploited by agents to alternate between tasks. In addition, we coordinate the actions of the multiple agents acting on their local states through these multipliers, which are gossiped through a communication network, eliminating the need to access other agent states. By these means, we propose a distributed multi-agent assignment protocol with theoretical feasibility guarantees that we corroborate in a monitoring numerical experiment.
- Abstract(参考訳): 我々は,制約付き強化学習を通じて,マルチエージェント代入問題の相反する要件に対処し,この目的のために標準正規化手法が不十分であることを強調する。
代わりに、二重変数の振動をエージェントによって利用してタスク間の交互化を行う状態拡張アプローチを繰り返す。
さらに,これらの乗算器を通信ネットワークを介してゴシップし,他のエージェント状態にアクセスする必要がなくなることで,各エージェントがローカル状態に作用する動作を協調する。
これらの方法により、モニタリング数値実験において相関する理論的実現可能性を保証する分散マルチエージェント割当てプロトコルを提案する。
関連論文リスト
- Quantifying Agent Interaction in Multi-agent Reinforcement Learning for
Cost-efficient Generalization [63.554226552130054]
マルチエージェント強化学習(MARL)における一般化の課題
エージェントが未確認のコプレイヤーに影響される程度は、エージェントのポリシーと特定のシナリオに依存する。
与えられたシナリオと環境におけるエージェント間の相互作用強度を定量化する指標であるLoI(Level of Influence)を提示する。
論文 参考訳(メタデータ) (2023-10-11T06:09:26Z) - Graph Exploration for Effective Multi-agent Q-Learning [46.723361065955544]
本稿では,エージェント間のグラフベース通信を用いたマルチエージェント強化学習(MARL)の探索手法を提案する。
エージェントが受け取った個々の報酬は、他のエージェントのアクションとは独立していると仮定する一方で、そのポリシーは結合されている。
提案手法では,より効率的な爆発行動を実行するために,近隣のエージェントが協調して状態-作用空間の不確かさを推定する。
論文 参考訳(メタデータ) (2023-04-19T10:28:28Z) - A Variational Approach to Mutual Information-Based Coordination for
Multi-Agent Reinforcement Learning [17.893310647034188]
マルチエージェント強化学習のための新しい相互情報フレームワークを提案する。
導出された下界を最大化するためにポリシーを適用することで,多エージェントアクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクティベートアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-01T12:21:30Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
協調型MARLにおける動的サブタスク代入(LDSA)を学習するための新しいフレームワークを提案する。
エージェントを異なるサブタスクに合理的に割り当てるために,能力に基づくサブタスク選択戦略を提案する。
LDSAは、より優れたコラボレーションのために、合理的で効果的なサブタスクの割り当てを学習していることを示す。
論文 参考訳(メタデータ) (2022-05-05T10:46:16Z) - Depthwise Convolution for Multi-Agent Communication with Enhanced
Mean-Field Approximation [9.854975702211165]
本稿では,MARL(Multi-agent RL)課題に取り組むための,局所的なコミュニケーション学習に基づく新しい手法を提案する。
まず,局所的な関係を効率的に抽出する深層的畳み込み機能を利用する新しい通信プロトコルを設計する。
第2に,エージェント相互作用の規模を減らすために,平均場近似を導入する。
論文 参考訳(メタデータ) (2022-03-06T07:42:43Z) - HAVEN: Hierarchical Cooperative Multi-Agent Reinforcement Learning with
Dual Coordination Mechanism [17.993973801986677]
多エージェント強化学習はしばしば、多数のエージェントによって引き起こされる指数関数的に大きな作用空間に悩まされる。
完全協調型マルチエージェント問題に対する階層的強化学習に基づく新しい値分解フレームワークHAVENを提案する。
論文 参考訳(メタデータ) (2021-10-14T10:43:47Z) - UPDeT: Universal Multi-agent Reinforcement Learning via Policy
Decoupling with Transformers [108.92194081987967]
タスクに適合する1つのアーキテクチャを設計し、汎用的なマルチエージェント強化学習パイプラインを最初に試行する。
従来のRNNモデルとは異なり、トランスフォーマーモデルを用いてフレキシブルなポリシーを生成する。
提案方式はUPDeT(Universal Policy Decoupling Transformer)と名付けられ,動作制限を緩和し,マルチエージェントタスクの決定プロセスをより説明しやすいものにする。
論文 参考訳(メタデータ) (2021-01-20T07:24:24Z) - Learning Safe Multi-Agent Control with Decentralized Neural Barrier
Certificates [19.261536710315028]
エージェントが静的な障害物や衝突に対する衝突を避けて目標を達成すべきマルチエージェント安全制御問題について検討する。
私達の中心の考えは安全証明書として制御障壁機能を学ぶことと複数のエージェント制御方針を共同で学ぶことです。
本稿では,特定の関数クラスに対して一般化を保証し,分散的に実装可能な新しい共同学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-14T03:17:17Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
我々はUniversal Value Exploration(UneVEn)と呼ばれる新しいMARLアプローチを提案する。
UneVEnは、一連の関連するタスクと、普遍的な後継機能の線形分解を同時に学習する。
一連の探索ゲームにおける実証的な結果、エージェント間の重要な調整を必要とする協調捕食・捕食作業への挑戦、およびStarCraft IIのマイクロマネジメントベンチマークは、UneVEnが他の最先端のMARLメソッドが失敗するタスクを解決できることを示している。
論文 参考訳(メタデータ) (2020-10-06T19:08:47Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
実世界のマルチエージェント設定は、エージェントや非エージェントエンティティのタイプや量が異なるタスクを伴うことが多い。
我々の方法は、これらの共通点を活用することを目的としており、「観察対象のランダムに選択されたサブグループのみを考えるとき、各エージェントが期待する効用は何か?」という問いを投げかける。
論文 参考訳(メタデータ) (2020-06-07T18:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。