RSMM: A Framework to Assess Maturity of Research Software Project
- URL: http://arxiv.org/abs/2406.01788v1
- Date: Mon, 3 Jun 2024 21:10:05 GMT
- Title: RSMM: A Framework to Assess Maturity of Research Software Project
- Authors: Deekshitha, Rena Bakhshi, Jason Maassen, Carlos Martinez Ortiz, Rob van Nieuwpoort, Slinger Jansen,
- Abstract summary: This paper introduces RSMM, a framework for evaluating and refining research software management.
RSMM offers a structured pathway for evaluating and refining research software management by categorizing 79 best practices.
Individuals as well as organizations involved in research software development gain a systematic approach to tackling various research software engineering challenges.
- Score: 1.285353663787249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The organizations and researchers producing research software face a common problem of making their software sustainable beyond funding provided by a single research project. This is addressed by research software engineers through building communities around their software, providing appropriate licensing, creating reliable and reproducible research software, making it sustainable and impactful, promoting, and ensuring that the research software is easy to adopt in research workflows, etc. As a result, numerous practices and guidelines exist to enhance research software quality, reusability, and sustainability. However, there is a lack of a unified framework to systematically integrate these practices and help organizations and research software developers refine their development and management processes. Our paper aims at bridging this gap by introducing a novel framework: RSMM. It is designed through systematic literature review and insights from interviews with research software project experts. In short, RSMM offers a structured pathway for evaluating and refining research software project management by categorizing 79 best practices into 17 capabilities across 4 focus areas. From assessing code quality and security to measuring impact, sustainability, and reproducibility, the model provides a complete evaluation of a research software project maturity. With RSMM, individuals as well as organizations involved in research software development gain a systematic approach to tackling various research software engineering challenges. By utilizing RSMM as a comprehensive checklist, organizations can systematically evaluate and refine their project management practices and organizational structure.
Related papers
- The Enhancement of Software Delivery Performance through Enterprise DevSecOps and Generative Artificial Intelligence in Chinese Technology Firms [0.4532517021515834]
This study investigates the impact of integrating DevSecOps and Generative Artificial Intelligence on software delivery performance within technology firms.
The findings reveal significant enhancements in R&D efficiency, improved source code management, and heightened software quality and security.
arXiv Detail & Related papers (2024-11-04T16:44:01Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
This research proposal aims to explore innovative solutions by focusing on the deployment of agents powered by Large Language Models (LLMs)
The iterative nature of agents, which allows for continuous learning and adaptation, can help surpass common challenges in code generation.
We aim to use the iterative feedback in these systems to further fine-tune the LLMs underlying the agents, becoming better aligned to the task of automated software improvement.
arXiv Detail & Related papers (2024-06-24T15:45:22Z) - FAIRSECO: An Extensible Framework for Impact Measurement of Research Software [1.549241498953151]
Existing methods for crediting research software and Research Software Engineers have proven to be insufficient.
We have developed FAIRSECO, an open source framework with the objective of assessing the impact of research software in research through the evaluation of various factors.
arXiv Detail & Related papers (2024-06-04T15:22:48Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
The present study aims to explore the familiarity of managers, leaders, and developers with software visualization tools.
This approach incorporated quantitative and qualitative analyses of data collected from practitioners using questionnaires and semi-structured interviews.
arXiv Detail & Related papers (2024-01-17T21:30:45Z) - A Case Study on Test Case Construction with Large Language Models:
Unveiling Practical Insights and Challenges [2.7029792239733914]
This paper examines the application of Large Language Models in the construction of test cases within the context of software engineering.
Through a blend of qualitative and quantitative analyses, this study assesses the impact of LLMs on test case comprehensiveness, accuracy, and efficiency.
arXiv Detail & Related papers (2023-12-19T20:59:02Z) - An Open Community-Driven Model For Sustainable Research Software:
Sustainable Research Software Institute [0.586336038845426]
The Sustainable Research Software Institute (SRSI) Model promotes sustainable practices in the research software community.
This white paper provides an in-depth overview of the SRSI Model, outlining its objectives, services, funding mechanisms, collaborations, and the potential impact it could have on the research software community.
arXiv Detail & Related papers (2023-08-29T01:00:32Z) - A Metadata-Based Ecosystem to Improve the FAIRness of Research Software [0.3185506103768896]
The reuse of research software is central to research efficiency and academic exchange.
The DataDesc ecosystem is presented, an approach to describing data models of software interfaces with detailed and machine-actionable metadata.
arXiv Detail & Related papers (2023-06-18T19:01:08Z) - Towards Automated Process Planning and Mining [77.34726150561087]
We present a research project in which researchers from the AI and BPM field work jointly together.
We discuss the overall research problem, the relevant fields of research and our overall research framework to automatically derive process models.
arXiv Detail & Related papers (2022-08-18T16:41:22Z) - Scaling up Search Engine Audits: Practical Insights for Algorithm
Auditing [68.8204255655161]
We set up experiments for eight search engines with hundreds of virtual agents placed in different regions.
We demonstrate the successful performance of our research infrastructure across multiple data collections.
We conclude that virtual agents are a promising venue for monitoring the performance of algorithms across long periods of time.
arXiv Detail & Related papers (2021-06-10T15:49:58Z) - Learnings from Frontier Development Lab and SpaceML -- AI Accelerators
for NASA and ESA [57.06643156253045]
Research with AI and ML technologies lives in a variety of settings with often asynchronous goals and timelines.
We perform a case study of the Frontier Development Lab (FDL), an AI accelerator under a public-private partnership from NASA and ESA.
FDL research follows principled practices that are grounded in responsible development, conduct, and dissemination of AI research.
arXiv Detail & Related papers (2020-11-09T21:23:03Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.