論文の概要: AI-based Classification of Customer Support Tickets: State of the Art and Implementation with AutoML
- arxiv url: http://arxiv.org/abs/2406.01789v1
- Date: Mon, 3 Jun 2024 21:13:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 20:52:25.148170
- Title: AI-based Classification of Customer Support Tickets: State of the Art and Implementation with AutoML
- Title(参考訳): AIによるカスタマーサポートチケットの分類:AutoMLによる最先端と実装
- Authors: Mario Truss, Stephan Boehm,
- Abstract要約: 本研究の目的は,自動機械学習(AutoML)の適用性を,サポートチケットを分類可能な機械学習モデル(MLモデル)をトレーニングする技術としてテストすることである。
本研究で行ったモデル評価は,AutoMLが機械学習モデルを優れた分類性能で訓練するのに利用できることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automation of support ticket classification is crucial to improve customer support performance and shortening resolution time for customer inquiries. This research aims to test the applicability of automated machine learning (AutoML) as a technology to train a machine learning model (ML model) that can classify support tickets. The model evaluation conducted in this research shows that AutoML can be used to train ML models with good classification performance. Moreover, this paper fills a research gap by providing new insights into developing AI solutions without a dedicated professional by utilizing AutoML, which makes this technology more accessible for companies without specialized AI departments and staff.
- Abstract(参考訳): サポートチケット分類の自動化は、顧客サポート性能の向上と顧客からの問い合わせの解決時間短縮に不可欠である。
本研究の目的は,自動機械学習(AutoML)の適用性を,サポートチケットを分類可能な機械学習モデル(MLモデル)をトレーニングする技術としてテストすることである。
本研究で行ったモデル評価は,AutoMLが機械学習モデルを優れた分類性能で訓練するのに利用できることを示す。
さらに、AutoMLを活用することで、専門のAI部門やスタッフを持たない企業にとって、AIソリューションの開発に関する新たな洞察を提供することで、研究ギャップを埋める。
関連論文リスト
- Position: A Call to Action for a Human-Centered AutoML Paradigm [83.78883610871867]
自動機械学習(AutoML)は、機械学習(ML)を自動かつ効率的に構成する基本的目的を中心に形成された。
AutoMLの完全な可能性を解き放つ鍵は、現在探索されていないAutoMLシステムとのユーザインタラクションの側面に対処することにある、と私たちは主張する。
論文 参考訳(メタデータ) (2024-06-05T15:05:24Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoActはQAのための自動エージェント学習フレームワークである。
大規模アノテートデータやクローズドソースモデルからの合成計画軌道は依存していない。
論文 参考訳(メタデータ) (2024-01-10T16:57:24Z) - Assessing the Use of AutoML for Data-Driven Software Engineering [13.524883764376481]
AutoMLは、エンドツーエンドのAI/MLパイプラインの構築を自動化することを約束する。
関心の高まりと高い期待にもかかわらず、AutoMLが現在採用されている範囲に関する情報が不足している。
論文 参考訳(メタデータ) (2023-07-20T11:14:24Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
本稿では,タスク指向のプロンプトを開発し,大規模言語モデル(LLM)を自動的に活用して学習パイプラインを自動化することを提案する。
本稿では,多様なAIモデルのブリッジとしてGPTを用いたAutoML-GPTを提案する。
このアプローチはコンピュータビジョン、自然言語処理、その他の課題領域において顕著な結果をもたらす。
論文 参考訳(メタデータ) (2023-05-04T02:09:43Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - Can Fairness be Automated? Guidelines and Opportunities for
Fairness-aware AutoML [52.86328317233883]
本報告では、公平性に関連する害が発生する様々な方法の概要を概説する。
この方向に進むためには、いくつかのオープンな技術的課題を強調します。
論文 参考訳(メタデータ) (2023-03-15T09:40:08Z) - Automated machine learning: AI-driven decision making in business
analytics [0.0]
本稿では、ビジネス分析におけるアプリケーションにおけるAutoMLの可能性について分析する。
H2O AutoMLフレームワークは、手動でチューニングされたMLモデルに対してベンチマークされた。
高速で、使いやすく、信頼性の高い結果を提供する。
論文 参考訳(メタデータ) (2022-05-21T08:35:02Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Whither AutoML? Understanding the Role of Automation in Machine Learning
Workflows [10.309305727686326]
機械学習をより広くアクセス可能にする取り組みは、機械学習のトレーニングとデプロイのプロセスを自動化することを目的としたAuto-MLツールの急速な増加をもたらしました。
今日、Auto-MLツールが実際にどのように使われているかを理解するために、初心者ホビーストからAuto-MLツールを使用する業界研究者まで、参加者と質的研究を行った。
私たちは、既存のツールのメリットと欠陥、およびMLにおける人間と自動化の役割に関する洞察を提示します。
論文 参考訳(メタデータ) (2021-01-13T02:12:46Z) - AutoML to Date and Beyond: Challenges and Opportunities [30.60364966752454]
AutoMLツールは、機械学習を非機械学習の専門家が利用できるようにすることを目的としている。
本稿では,AutoMLシステムのための新しい分類システムを提案する。
エンド・ツー・エンドの機械学習パイプラインのさらなる自動化に必要な研究を指摘して、将来のロードマップを策定しました。
論文 参考訳(メタデータ) (2020-10-21T06:08:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。