論文の概要: Position: A Call to Action for a Human-Centered AutoML Paradigm
- arxiv url: http://arxiv.org/abs/2406.03348v1
- Date: Wed, 5 Jun 2024 15:05:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 17:41:32.792546
- Title: Position: A Call to Action for a Human-Centered AutoML Paradigm
- Title(参考訳): ポジション:人間中心のAutoMLパラダイムに対する行動呼び出し
- Authors: Marius Lindauer, Florian Karl, Anne Klier, Julia Moosbauer, Alexander Tornede, Andreas Mueller, Frank Hutter, Matthias Feurer, Bernd Bischl,
- Abstract要約: 自動機械学習(AutoML)は、機械学習(ML)を自動かつ効率的に構成する基本的目的を中心に形成された。
AutoMLの完全な可能性を解き放つ鍵は、現在探索されていないAutoMLシステムとのユーザインタラクションの側面に対処することにある、と私たちは主張する。
- 参考スコア(独自算出の注目度): 83.78883610871867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated machine learning (AutoML) was formed around the fundamental objectives of automatically and efficiently configuring machine learning (ML) workflows, aiding the research of new ML algorithms, and contributing to the democratization of ML by making it accessible to a broader audience. Over the past decade, commendable achievements in AutoML have primarily focused on optimizing predictive performance. This focused progress, while substantial, raises questions about how well AutoML has met its broader, original goals. In this position paper, we argue that a key to unlocking AutoML's full potential lies in addressing the currently underexplored aspect of user interaction with AutoML systems, including their diverse roles, expectations, and expertise. We envision a more human-centered approach in future AutoML research, promoting the collaborative design of ML systems that tightly integrates the complementary strengths of human expertise and AutoML methodologies.
- Abstract(参考訳): 機械学習(AutoML)は、機械学習(ML)ワークフローを自動かつ効率的に構成し、新しいMLアルゴリズムの研究を支援し、より広い聴衆にアクセスできるようにすることで、MLの民主化に寄与する、という基本的な目的に基づいて設立された。
過去10年間、AutoMLの賞賛に値する成果は主に予測パフォーマンスの最適化に重点を置いてきた。
この焦点が当てられた進歩は、実質的には、AutoMLがより広い、当初の目標をどの程度達成したかという疑問を提起する。
このポジションペーパーでは、AutoMLの完全な可能性を解き放つ鍵は、さまざまな役割、期待、専門知識を含む、AutoMLシステムとのユーザインタラクションの現在未解決の側面に対処することにある、と論じる。
我々は、将来のAutoML研究においてより人間中心のアプローチを構想し、人間の専門知識とAutoML方法論の補完的強みを密に統合するMLシステムの協調設計を促進する。
関連論文リスト
- UniAutoML: A Human-Centered Framework for Unified Discriminative and Generative AutoML with Large Language Models [5.725785427377439]
我々は、人間中心のAutoMLフレームワークであるUniAutoMLを紹介し、AutoMLを識別的タスクと生成的タスクの両方に統一する。
UniAutoMLの人間中心の設計は、自然言語の対話を容易にする対話型ユーザインタフェース(CUI)を革新的に特徴付けている。
この設計により、AutoMLトレーニングプロセス全体の透明性とユーザコントロールが向上し、ユーザがトレーニング対象のモデルをシームレスに分解あるいは修正できるようになる。
論文 参考訳(メタデータ) (2024-10-09T17:33:15Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - AutoMMLab: Automatically Generating Deployable Models from Language
Instructions for Computer Vision Tasks [39.71649832548044]
AutoMMLabは、ユーザの言語命令に従う汎用LLMベースのAutoMLシステムである。
提案する AutoMMLab システムは,AutoML と OpenMMLab コミュニティを結ぶブリッジとして LLM を効果的に利用している。
実験の結果、AutoMMLabシステムは汎用的で、さまざまなメインストリームタスクをカバーしています。
論文 参考訳(メタデータ) (2024-02-23T14:38:19Z) - A Multivocal Literature Review on the Benefits and Limitations of
Automated Machine Learning Tools [9.69672653683112]
我々は多言語文献レビューを行い、学術文献から54の資料と、AutoMLの利点と限界について報告した灰色文献から108の資料を同定した。
メリットについては、AutoMLツールがMLの中核ステップの合理化に役立つ点を強調します。
AutoMLの普及の障害となるいくつかの制限を強調します。
論文 参考訳(メタデータ) (2024-01-21T01:39:39Z) - Assessing the Use of AutoML for Data-Driven Software Engineering [10.40771687966477]
AutoMLは、エンドツーエンドのAI/MLパイプラインの構築を自動化することを約束する。
関心の高まりと高い期待にもかかわらず、AutoMLが現在採用されている範囲に関する情報が不足している。
論文 参考訳(メタデータ) (2023-07-20T11:14:24Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - Can Fairness be Automated? Guidelines and Opportunities for
Fairness-aware AutoML [52.86328317233883]
本報告では、公平性に関連する害が発生する様々な方法の概要を概説する。
この方向に進むためには、いくつかのオープンな技術的課題を強調します。
論文 参考訳(メタデータ) (2023-03-15T09:40:08Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - Towards Green Automated Machine Learning: Status Quo and Future
Directions [71.86820260846369]
AutoMLは高いリソース消費で批判されている。
本稿では,AutoMLプロセス全体を環境に優しいものにするためのパラダイムであるGreen AutoMLを提案する。
論文 参考訳(メタデータ) (2021-11-10T18:57:27Z) - Whither AutoML? Understanding the Role of Automation in Machine Learning
Workflows [10.309305727686326]
機械学習をより広くアクセス可能にする取り組みは、機械学習のトレーニングとデプロイのプロセスを自動化することを目的としたAuto-MLツールの急速な増加をもたらしました。
今日、Auto-MLツールが実際にどのように使われているかを理解するために、初心者ホビーストからAuto-MLツールを使用する業界研究者まで、参加者と質的研究を行った。
私たちは、既存のツールのメリットと欠陥、およびMLにおける人間と自動化の役割に関する洞察を提示します。
論文 参考訳(メタデータ) (2021-01-13T02:12:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。