論文の概要: EMOE: Expansive Matching of Experts for Robust Uncertainty Based Rejection
- arxiv url: http://arxiv.org/abs/2406.01825v1
- Date: Mon, 3 Jun 2024 22:37:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 20:42:35.585258
- Title: EMOE: Expansive Matching of Experts for Robust Uncertainty Based Rejection
- Title(参考訳): EMOE:ロバストな不確実性に基づく拒絶のための専門家の広範囲なマッチング
- Authors: Yunni Qu, James Wellnitz, Alexander Tropsha, Junier Oliva,
- Abstract要約: Expansive Matching of Experts (EMOE) は, アウト・オブ・ディストリビューションポイントによる予測と不確実性に基づく拒絶を改善するために, サポート拡張, 補間的擬似ラベルを用いた新しい手法である。
本稿では,潜在空間におけるOODインスタンスを生成する拡張データ拡張手法と,擬似ラベル処理のための拡張拡張点をフィルタリングするための実証実験に基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 51.16708090456525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Expansive Matching of Experts (EMOE) is a novel method that utilizes support-expanding, extrapolatory pseudo-labeling to improve prediction and uncertainty based rejection on out-of-distribution (OOD) points. We propose an expansive data augmentation technique that generates OOD instances in a latent space, and an empirical trial based approach to filter out augmented expansive points for pseudo-labeling. EMOE utilizes a diverse set of multiple base experts as pseudo-labelers on the augmented data to improve OOD performance through a shared MLP with multiple heads (one per expert). We demonstrate that EMOE achieves superior performance compared to state-of-the-art methods on tabular data.
- Abstract(参考訳): Expansive Matching of Experts (EMOE) は, アウト・オブ・ディストリビューション(OOD)点に基づく予測と不確実性に基づく拒絶を改善するために, サポート拡張, 補間的擬似ラベルを用いた新しい手法である。
本稿では,潜在空間におけるOODインスタンスを生成する拡張データ拡張手法と,擬似ラベル処理のための拡張拡張点をフィルタリングするための実証実験に基づくアプローチを提案する。
EMOEは、複数のベースエキスパートの多様なセットを、拡張データ上の擬似ラベルとして使用して、複数のヘッドを持つ共有MLP(専門家1人)を通じて、OODのパフォーマンスを改善する。
EMOEは表データの最先端手法に比べて優れた性能を示すことを示す。
関連論文リスト
- Improving Out-of-Distribution Detection by Combining Existing Post-hoc Methods [1.747623282473278]
ポストホックディープ・オブ・ディストリビューション(OOD)検出は急速に拡大した。
現在のベストプラクティスは、手元にあるデータセット上のすべてのメソッドをテストすることです。
本稿では,OOD検出を効果的に組み合わせるための新しい手法の開発に焦点を移す。
論文 参考訳(メタデータ) (2024-07-09T15:46:39Z) - Diversified Outlier Exposure for Out-of-Distribution Detection via
Informative Extrapolation [110.34982764201689]
Out-of-Distribution(OOD)検出は、現実のアプリケーションに信頼性の高い機械学習モデルをデプロイするために重要である。
近年, 外部曝露によるOOD検出に有意な結果が得られた。
本稿では,補助外乱量に基づく情報外挿による効果的なOOD検出のための新しい枠組み,すなわちDivOE(Diversified Outlier Exposure)を提案する。
論文 参考訳(メタデータ) (2023-10-21T07:16:09Z) - Mimicking Better by Matching the Approximate Action Distribution [48.81067017094468]
そこで我々は,Imitation Learning from Observationsのための新しい,サンプル効率の高いオンライン政治アルゴリズムMAADを紹介する。
我々は、専門家のパフォーマンスを達成するためには、かなり少ないインタラクションが必要であり、現在最先端の政治手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T12:43:47Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE)は、安価な計算オーバーヘッドを持つ有望なスケーリング能力のため、大きな関心を集めている。
MoEは密度の高い層をスパースの専門家に変換し、ゲートルーティングネットワークを使用して専門家を条件付きで活性化させる。
しかし、専門家の数が増加するにつれて、乱雑なパラメータを持つMoEはデータアロケーションの過度な調整とスパースに悩まされる。
論文 参考訳(メタデータ) (2022-07-19T06:09:55Z) - Pseudo-Spherical Contrastive Divergence [119.28384561517292]
エネルギーベースモデルの最大学習確率を一般化するために,擬球面コントラスト分散(PS-CD)を提案する。
PS-CDは難解な分割関数を避け、学習目的の一般化されたファミリーを提供する。
論文 参考訳(メタデータ) (2021-11-01T09:17:15Z) - Can multi-label classification networks know what they don't know? [20.827128594812578]
アウト・オブ・ディストリビューション(OOD)の不確実性(out-of-distriion)を推定することは、機械学習モデルをオープンな環境に安全にデプロイする上で、重要な課題である。
複数ラベルからのエネルギースコアを集約することにより,OODインジケータのスコアを簡易かつ効果的に推定するJointEnergyを提案する。
提案手法はMS-COCO, PASCAL-VOC, NUS-WIDEを含む3つの共通マルチラベル分類ベンチマークにおいて有効であることを示す。
論文 参考訳(メタデータ) (2021-09-29T03:03:52Z) - Understanding the Effects of Adversarial Personalized Ranking
Optimization Method on Recommendation Quality [6.197934754799158]
ベイズパーソナライズランキング(BPR)とAPR最適化フレームワークの学習特性をモデル化する。
APRがBPRよりも人気バイアスを増大させるのは、ショートヘッドアイテムからの肯定的な更新が不均衡に多いためである。
論文 参考訳(メタデータ) (2021-07-29T10:22:20Z) - MiCE: Mixture of Contrastive Experts for Unsupervised Image Clustering [39.46459858177353]
本稿では,コントラスト学習で学習した識別表現と潜在混合モデルで取得した意味構造を利用する,統一確率的クラスタリングフレームワークを提案する。
専門家の混合によって動機付けられたマウスは、ラベルのないデータセットを潜在意味論に従ってサブセットに分割するゲーティング関数と、それらに割り当てられた異なるサブセットを対比学習方法で識別する複数の専門家を用いる。
論文 参考訳(メタデータ) (2021-05-05T07:17:57Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。