論文の概要: Can multi-label classification networks know what they don't know?
- arxiv url: http://arxiv.org/abs/2109.14162v1
- Date: Wed, 29 Sep 2021 03:03:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-30 14:46:45.177984
- Title: Can multi-label classification networks know what they don't know?
- Title(参考訳): マルチラベル分類ネットワークは、彼らが知らないことを知ることができるか?
- Authors: Haoran Wang, Weitang Liu, Alex Bocchieri, Yixuan Li
- Abstract要約: アウト・オブ・ディストリビューション(OOD)の不確実性(out-of-distriion)を推定することは、機械学習モデルをオープンな環境に安全にデプロイする上で、重要な課題である。
複数ラベルからのエネルギースコアを集約することにより,OODインジケータのスコアを簡易かつ効果的に推定するJointEnergyを提案する。
提案手法はMS-COCO, PASCAL-VOC, NUS-WIDEを含む3つの共通マルチラベル分類ベンチマークにおいて有効であることを示す。
- 参考スコア(独自算出の注目度): 20.827128594812578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating out-of-distribution (OOD) uncertainty is a central challenge for
safely deploying machine learning models in the open-world environment.
Improved methods for OOD detection in multi-class classification have emerged,
while OOD detection methods for multi-label classification remain underexplored
and use rudimentary techniques. We propose JointEnergy, a simple and effective
method, which estimates the OOD indicator scores by aggregating energy scores
from multiple labels. We show that JointEnergy can be mathematically
interpreted from a joint likelihood perspective. Our results show consistent
improvement over previous methods that are based on the maximum-valued scores,
which fail to capture joint information from multiple labels. We demonstrate
the effectiveness of our method on three common multi-label classification
benchmarks, including MS-COCO, PASCAL-VOC, and NUS-WIDE. We show that
JointEnergy can reduce the FPR95 by up to 10.05% compared to the previous best
baseline, establishing state-of-the-art performance.
- Abstract(参考訳): アウトオブディストリビューション(ood)の不確実性の推定は、オープンワールド環境で機械学習モデルを安全にデプロイするための中心的な課題である。
マルチクラス分類におけるOOD検出の方法が改良されている一方で,OOD検出手法は未探索のままであり,初歩的手法を用いている。
複数ラベルからのエネルギースコアを集約することにより,OODインジケータのスコアを簡易かつ効果的に推定するJointEnergyを提案する。
共同エネルギーは, 確率的視点から数学的に解釈できることを示す。
以上の結果から,複数ラベルのジョイント情報の取得に失敗する最大スコアに基づく従来手法よりも一貫した改善が得られた。
提案手法はMS-COCO, PASCAL-VOC, NUS-WIDEを含む3つの共通マルチラベル分類ベンチマークにおいて有効であることを示す。
その結果,fpr95は従来のベストベースラインと比較して最大10.05%削減でき,最新性能が得られた。
関連論文リスト
- COOD: Concept-based Zero-shot OOD Detection [12.361461338978732]
ゼロショットマルチラベルOOD検出フレームワークであるCOODを紹介する。
ラベルごとに肯定的概念と否定的概念の両方で意味空間を豊かにすることにより、我々のアプローチは複雑なラベル依存をモデル化する。
提案手法は既存のアプローチよりも優れており,VOCとデータセットの両方で平均95%のAUROCを実現している。
論文 参考訳(メタデータ) (2024-11-15T08:15:48Z) - Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
本稿では,非自明なOOD検出問題に対処するため,Margin bounded Confidence Scores (MaCS) と呼ばれる新しい手法を提案する。
MaCS は ID と OOD のスコアの差を拡大し、決定境界をよりコンパクトにする。
画像分類タスクのための様々なベンチマークデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-22T05:40:25Z) - Improving Out-of-Distribution Detection by Combining Existing Post-hoc Methods [1.747623282473278]
ポストホックディープ・オブ・ディストリビューション(OOD)検出は急速に拡大した。
現在のベストプラクティスは、手元にあるデータセット上のすべてのメソッドをテストすることです。
本稿では,OOD検出を効果的に組み合わせるための新しい手法の開発に焦点を移す。
論文 参考訳(メタデータ) (2024-07-09T15:46:39Z) - Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox [70.57120710151105]
既存のアウト・オブ・ディストリビューション(OOD)検出ベンチマークは、サンプルを新しいラベルでOODデータとして分類する。
いくつかの限界OODサンプルは、実際には分布内(ID)サンプルに密接なセマンティック内容を持ち、OODサンプルをソリテスパラドックス(英語版)と判定する。
この問題に対処するため,Incremental Shift OOD (IS-OOD) というベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-14T09:27:56Z) - EMOE: Expansive Matching of Experts for Robust Uncertainty Based Rejection [51.16708090456525]
Expansive Matching of Experts (EMOE) は, アウト・オブ・ディストリビューションポイントによる予測と不確実性に基づく拒絶を改善するために, サポート拡張, 補間的擬似ラベルを用いた新しい手法である。
本稿では,潜在空間におけるOODインスタンスを生成する拡張データ拡張手法と,擬似ラベル処理のための拡張拡張点をフィルタリングするための実証実験に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-06-03T22:37:45Z) - Continual Evidential Deep Learning for Out-of-Distribution Detection [20.846788009755183]
不確実性に基づくディープラーニングモデルは、正確で信頼性の高い予測を提供する能力に対して、大きな関心を集めている。
Evidential Deep Learningは、単一決定論的ニューラルネットワークによるアウト・オブ・ディストリビューション(OOD)データの検出において、優れたパフォーマンスを実現している。
本稿では,オブジェクト分類とOOD検出を同時に行うために,明らかなディープラーニング手法を連続的な学習フレームワークに統合することを提案する。
論文 参考訳(メタデータ) (2023-09-06T13:36:59Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
安全(r)AIとの関連性を考えると,OOD検出法の比較の基礎が実用的ニーズと整合しているかどうかを検討することが重要である。
我々は,IDとOODの分離が不十分なことを明示する新しい指標であるAUTC(Area Under the Threshold Curve)を提案する。
論文 参考訳(メタデータ) (2023-06-26T12:51:32Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
これらの評価手法を用いて、広範囲のモデルにおいて広く用いられている属性手法の長所と短所について検討する。
論文 参考訳(メタデータ) (2023-03-21T14:24:58Z) - Knowledge Distillation from Single to Multi Labels: an Empirical Study [14.12487391004319]
クラス活性化マップ(CAM)に基づく新しい蒸留法を提案する。
以上の結果から,ロジット法はマルチラベル分類に適していないことが示唆された。
そこで本研究では,適切な暗黒知識にクラス情報を導入し,最終分類結果と高い相関性を持たせることを提案する。
論文 参考訳(メタデータ) (2023-03-15T04:39:01Z) - Unsupervised Evaluation of Out-of-distribution Detection: A Data-centric
Perspective [55.45202687256175]
アウト・オブ・ディストリビューション(OOD)検出法は、個々のテストサンプルがイン・ディストリビューション(IND)なのかOODなのかという、試験対象の真実を持っていると仮定する。
本稿では,OOD検出における教師なし評価問題を初めて紹介する。
我々は,OOD検出性能の教師なし指標としてGscoreを計算する3つの方法を提案する。
論文 参考訳(メタデータ) (2023-02-16T13:34:35Z) - Towards Better Understanding Attribution Methods [77.1487219861185]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
また,いくつかの属性法の性能を著しく向上する処理後平滑化ステップを提案する。
論文 参考訳(メタデータ) (2022-05-20T20:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。