論文の概要: GraphWeaver: Billion-Scale Cybersecurity Incident Correlation
- arxiv url: http://arxiv.org/abs/2406.01842v1
- Date: Mon, 3 Jun 2024 23:28:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 20:32:51.366376
- Title: GraphWeaver: Billion-Scale Cybersecurity Incident Correlation
- Title(参考訳): GraphWeaver: 数十億ドル規模のサイバーセキュリティインシデント相関
- Authors: Scott Freitas, Amir Gharib,
- Abstract要約: GraphWeaverは、従来のインシデント相関プロセスを、データ最適化されたジオ分散グラフベースのアプローチに移行する、業界規模のフレームワークです。
GraphWeaverはMicrosoft Defender XDR製品に統合され、世界中でデプロイされる。
この統合は高い相関精度を維持しただけでなく、従来の相関ストレージの要求を7.4倍削減した。
- 参考スコア(独自算出の注目度): 2.2572772235310934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the dynamic landscape of large enterprise cybersecurity, accurately and efficiently correlating billions of security alerts into comprehensive incidents is a substantial challenge. Traditional correlation techniques often struggle with maintenance, scaling, and adapting to emerging threats and novel sources of telemetry. We introduce GraphWeaver, an industry-scale framework that shifts the traditional incident correlation process to a data-optimized, geo-distributed graph based approach. GraphWeaver introduces a suite of innovations tailored to handle the complexities of correlating billions of shared evidence alerts across hundreds of thousands of enterprises. Key among these innovations are a geo-distributed database and PySpark analytics engine for large-scale data processing, a minimum spanning tree algorithm to optimize correlation storage, integration of security domain knowledge and threat intelligence, and a human-in-the-loop feedback system to continuously refine key correlation processes and parameters. GraphWeaver is integrated into the Microsoft Defender XDR product and deployed worldwide, handling billions of correlations with a 99% accuracy rate, as confirmed by customer feedback and extensive investigations by security experts. This integration has not only maintained high correlation accuracy but reduces traditional correlation storage requirements by 7.4x. We provide an in-depth overview of the key design and operational features of GraphWeaver, setting a precedent as the first cybersecurity company to openly discuss these critical capabilities at this level of depth.
- Abstract(参考訳): 大企業のサイバーセキュリティの動的な状況では、何十億ものセキュリティアラートを包括的インシデントに正確かつ効率的に関連付けることが大きな課題である。
伝統的な相関技術は、しばしば保守、スケーリング、新しい脅威やテレメトリの新たな源への適応に苦しむ。
GraphWeaverは、従来のインシデント相関プロセスを、データ最適化されたジオ分散グラフベースのアプローチに移行する、業界規模のフレームワークです。
GraphWeaverは、数十万の企業にまたがる数十億の共有エビデンスアラートに関連する複雑さを扱うために、一連のイノベーションを紹介している。
これらのイノベーションの鍵となるのは、大規模データ処理のためのジオ分散データベースとPySpark分析エンジン、相関ストレージを最適化する最小のスパンニングツリーアルゴリズム、セキュリティドメイン知識と脅威インテリジェンスの統合、重要な相関プロセスとパラメータを継続的に洗練するヒューマン・イン・ザ・ループフィードバックシステムである。
GraphWeaverはMicrosoft Defender XDR製品に統合され、世界中のデプロイされ、顧客からのフィードバックとセキュリティ専門家による広範な調査によって確認されたように、何十億もの相関を99%の精度で処理している。
この統合は高い相関精度を維持しただけでなく、従来の相関ストレージの要求を7.4倍削減した。
GraphWeaverの重要な設計と運用機能の詳細な概要を提供し、このレベルでこれらの重要な機能をオープンに議論する最初のサイバーセキュリティ企業として、前例を定めています。
関連論文リスト
- PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - Privacy-Preserving Intrusion Detection using Convolutional Neural Networks [0.25163931116642785]
顧客のプライベートデータに対して分析サービスを提供するモデルオーナのユースケースについて検討する。
データに関する情報はアナリストに公開されず,モデルに関する情報は顧客にリークされない。
プライバシ保護技術を用いた畳み込みニューラルネットワークに基づく攻撃検知システムを構築した。
論文 参考訳(メタデータ) (2024-04-15T09:56:36Z) - Attention-GAN for Anomaly Detection: A Cutting-Edge Approach to
Cybersecurity Threat Management [0.0]
本稿では,異常検出に焦点をあてた,サイバーセキュリティ向上のための革新的な注意-GANフレームワークを提案する。
提案手法は、多様なリアルな合成攻撃シナリオを生成し、データセットを充実させ、脅威識別を改善することを目的としている。
GAN(Generative Adversarial Networks)と注意機構を統合することが提案手法の重要な特徴である。
attention-GANフレームワークは先駆的なアプローチとして登場し、高度なサイバー防御戦略のための新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2024-02-25T01:10:55Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
アタックグラフ(AG)は、コンピュータネットワーク上のマルチステップ攻撃をモデル化し分析する最も適したソリューションである。
本稿では,AG生成のための分析駆動型フレームワークを紹介する。
定量的な統計的意義を持つAG生成が完了する前に、リアルタイムな攻撃経路解析を可能にする。
論文 参考訳(メタデータ) (2023-12-27T10:44:58Z) - Fed-urlBERT: Client-side Lightweight Federated Transformers for URL Threat Analysis [6.552094912099549]
プライバシの懸念とサイバーセキュリティにおけるクロスドメインコラボレーションの必要性の両方に対処するために設計されたフェデレーションURL事前トレーニングモデル。
我々のアポックは、独立および同一分散(IID)および2つの非IIDデータシナリオの下で、集中モデルに匹敵する性能を達成する。
論文 参考訳(メタデータ) (2023-12-06T17:31:16Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Privacy-preserving Graph Analytics: Secure Generation and Federated
Learning [72.90158604032194]
我々は、リッチな属性と関係を表現する重要な能力を提供するグラフデータのプライバシー保護分析に焦点を当てる。
本稿では,プライバシ保護グラフ生成とフェデレーショングラフ学習という2つの方向性について論じる。
論文 参考訳(メタデータ) (2022-06-30T18:26:57Z) - Efficient Logistic Regression with Local Differential Privacy [0.0]
モノのインターネット(Internet of Things)デバイスは急速に拡大し、大量のデータを生み出している。
これらのデバイスから収集されたデータを探索する必要性が高まっている。
コラボレーション学習は、モノのインターネット(Internet of Things)設定に戦略的ソリューションを提供すると同時に、データのプライバシに関する一般の懸念も引き起こす。
論文 参考訳(メタデータ) (2022-02-05T22:44:03Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - PicoDomain: A Compact High-Fidelity Cybersecurity Dataset [0.9281671380673305]
現在のサイバーセキュリティデータセットは、根拠のない真実を提供するか、匿名化されたデータでそれを行う。
既存のデータセットのほとんどは、プロトタイプ開発中に扱いにくいほどの大きさです。
本稿では,現実的な侵入から得られたZeekログのコンパクトな高忠実度収集であるPicoDomainデータセットを開発した。
論文 参考訳(メタデータ) (2020-08-20T20:18:04Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。