Charting the Landscape of Nefarious Uses of Generative Artificial Intelligence for Online Election Interference
- URL: http://arxiv.org/abs/2406.01862v4
- Date: Wed, 30 Oct 2024 05:29:34 GMT
- Title: Charting the Landscape of Nefarious Uses of Generative Artificial Intelligence for Online Election Interference
- Authors: Emilio Ferrara,
- Abstract summary: This paper explores the nefarious applications of GenAI, highlighting their potential to disrupt democratic processes.
Malicious actors exploit these technologies to try influencing voter behavior, spread disinformation, and undermine public trust in electoral systems.
- Score: 11.323961700172175
- License:
- Abstract: Generative Artificial Intelligence (GenAI) and Large Language Models (LLMs) pose significant risks, particularly in the realm of online election interference. This paper explores the nefarious applications of GenAI, highlighting their potential to disrupt democratic processes through deepfakes, botnets, targeted misinformation campaigns, and synthetic identities. By examining recent case studies and public incidents, we illustrate how malicious actors exploit these technologies to try influencing voter behavior, spread disinformation, and undermine public trust in electoral systems. The paper also discusses the societal implications of these threats, emphasizing the urgent need for robust mitigation strategies and international cooperation to safeguard democratic integrity.
Related papers
- Cyber Threats to Canadian Federal Election: Emerging Threats, Assessment, and Mitigation Strategies [2.04903126350824]
Recent foreign interference in elections globally highlight the increasing sophistication of adversaries in exploiting technical and human vulnerabilities.
To mitigate these vulnerabilities, a threat assessment is crucial to identify emerging threats, develop incident response capabilities, and build public trust and resilience against cyber threats.
The research identifies three major threats: misinformation, disinformation, and malinformation (MDM) campaigns; attacks on critical infrastructure and election support systems; and espionage by malicious actors.
arXiv Detail & Related papers (2024-10-07T23:40:40Z) - Prioritising Response-able IP Practices in Digitization of Electoral Processes in Africa [0.0]
This paper explores the relationship between intellectual property (IP) practices and the adoption of digital technologies used in democratic electoral processes.
Because of the hard boundaries associated with IP it creates an environment where the systems are controlled solely by technology IP owners.
This questions the response-ability and trust-ability of digital technologies in running democratic processes.
arXiv Detail & Related papers (2024-08-07T11:07:09Z) - Mapping the individual, social, and biospheric impacts of Foundation Models [0.39843531413098965]
This paper offers a critical framework to account for the social, political, and environmental dimensions of foundation models and generative AI.
We identify 14 categories of risks and harms and map them according to their individual, social, and biospheric impacts.
arXiv Detail & Related papers (2024-07-24T10:05:40Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source Generative AI.
arXiv Detail & Related papers (2024-04-25T21:14:24Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models [7.835719708227145]
Deepfakes and the spread of m/disinformation have emerged as formidable threats to the integrity of information ecosystems worldwide.
We highlight the mechanisms through which generative AI based on large models (LM-based GenAI) craft seemingly convincing yet fabricated contents.
We introduce an integrated framework that combines advanced detection algorithms, cross-platform collaboration, and policy-driven initiatives.
arXiv Detail & Related papers (2023-11-29T06:47:58Z) - Decoding the Threat Landscape : ChatGPT, FraudGPT, and WormGPT in Social Engineering Attacks [0.0]
Generative AI models have revolutionized the field of cyberattacks, empowering malicious actors to craft convincing and personalized phishing lures.
These models, ChatGPT, FraudGPT, and WormGPT, have augmented existing threats and ushered in new dimensions of risk.
To counter these threats, we outline a range of strategies, including traditional security measures, AI-powered security solutions, and collaborative approaches in cybersecurity.
arXiv Detail & Related papers (2023-10-09T10:31:04Z) - Factuality Challenges in the Era of Large Language Models [113.3282633305118]
Large Language Models (LLMs) generate false, erroneous, or misleading content.
LLMs can be exploited for malicious applications.
This poses a significant challenge to society in terms of the potential deception of users.
arXiv Detail & Related papers (2023-10-08T14:55:02Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
This paper reports the findings of a workshop held at Google on the dual-use dilemma posed by GenAI.
GenAI can be used just as well by attackers to generate new attacks and increase the velocity and efficacy of existing attacks.
We discuss short-term and long-term goals for the community on this topic.
arXiv Detail & Related papers (2023-08-28T18:51:09Z) - The Role of Large Language Models in the Recognition of Territorial
Sovereignty: An Analysis of the Construction of Legitimacy [67.44950222243865]
We argue that technology tools like Google Maps and Large Language Models (LLM) are often perceived as impartial and objective.
We highlight the case of three controversial territories: Crimea, West Bank and Transnitria, by comparing the responses of ChatGPT against Wikipedia information and United Nations resolutions.
arXiv Detail & Related papers (2023-03-17T08:46:49Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.