PDHG-Unrolled Learning-to-Optimize Method for Large-Scale Linear Programming
- URL: http://arxiv.org/abs/2406.01908v2
- Date: Thu, 6 Jun 2024 09:07:37 GMT
- Title: PDHG-Unrolled Learning-to-Optimize Method for Large-Scale Linear Programming
- Authors: Bingheng Li, Linxin Yang, Yupeng Chen, Senmiao Wang, Qian Chen, Haitao Mao, Yao Ma, Akang Wang, Tian Ding, Jiliang Tang, Ruoyu Sun,
- Abstract summary: We propose an FOM-unrolled neural network (NN) called PDHG-Net to solve large-scale linear programming problems.
Experiments show that our approach can accelerate solving, achieving up to a 3$times$ speedup compared to FOMs for large-scale LP problems.
- Score: 36.13745722329505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving large-scale linear programming (LP) problems is an important task in various areas such as communication networks, power systems, finance and logistics. Recently, two distinct approaches have emerged to expedite LP solving: (i) First-order methods (FOMs); (ii) Learning to optimize (L2O). In this work, we propose an FOM-unrolled neural network (NN) called PDHG-Net, and propose a two-stage L2O method to solve large-scale LP problems. The new architecture PDHG-Net is designed by unrolling the recently emerged PDHG method into a neural network, combined with channel-expansion techniques borrowed from graph neural networks. We prove that the proposed PDHG-Net can recover PDHG algorithm, thus can approximate optimal solutions of LP instances with a polynomial number of neurons. We propose a two-stage inference approach: first use PDHG-Net to generate an approximate solution, and then apply PDHG algorithm to further improve the solution. Experiments show that our approach can significantly accelerate LP solving, achieving up to a 3$\times$ speedup compared to FOMs for large-scale LP problems.
Related papers
- Learning Optimal Linear Precoding for Cell-Free Massive MIMO with GNN [15.271970287767164]
We develop a graph neural network (GNN) to compute, within a time budget of 1 to 2 milliseconds required by practical systems.
We show that it achieves near optimal spectral efficiency in a range of scenarios with different number of APs and UEs.
arXiv Detail & Related papers (2024-06-06T19:29:33Z) - Algorithms for Efficiently Learning Low-Rank Neural Networks [12.916132936159713]
We study algorithms for learning low-rank neural networks.
We present a provably efficient algorithm which learns an optimal low-rank approximation to a single-hidden-layer ReLU network.
We propose a novel low-rank framework for training low-rank $textitdeep$ networks.
arXiv Detail & Related papers (2022-02-02T01:08:29Z) - Graph Signal Restoration Using Nested Deep Algorithm Unrolling [85.53158261016331]
Graph signal processing is a ubiquitous task in many applications such as sensor, social transportation brain networks, point cloud processing, and graph networks.
We propose two restoration methods based on convexindependent deep ADMM (ADMM)
parameters in the proposed restoration methods are trainable in an end-to-end manner.
arXiv Detail & Related papers (2021-06-30T08:57:01Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Partitioning sparse deep neural networks for scalable training and
inference [8.282177703075453]
State-of-the-art deep neural networks (DNNs) have significant computational and data management requirements.
Sparsification and pruning methods are shown to be effective in removing a large fraction of connections in DNNs.
The resulting sparse networks present unique challenges to further improve the computational efficiency of training and inference in deep learning.
arXiv Detail & Related papers (2021-04-23T20:05:52Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
We propose Deep Policy Dynamic Programming (D PDP) to combine the strengths of learned neurals with those of dynamic programming algorithms.
D PDP prioritizes and restricts the DP state space using a policy derived from a deep neural network, which is trained to predict edges from example solutions.
We evaluate our framework on the travelling salesman problem (TSP) and the vehicle routing problem (VRP) and show that the neural policy improves the performance of (restricted) DP algorithms.
arXiv Detail & Related papers (2021-02-23T15:33:57Z) - Deep Reinforcement Learning for Field Development Optimization [0.0]
In this work, the goal is to apply convolutional neural network-based (CNN) deep reinforcement learning (DRL) algorithms to the field development optimization problem.
The proximal policy optimization (PPO) algorithm is considered with two CNN architectures of varying number of layers and composition.
Both networks obtained policies that provide satisfactory results when compared to a hybrid particle swarm optimization - mesh adaptive direct search (PSO-MADS) algorithm.
arXiv Detail & Related papers (2020-08-05T06:26:13Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.