Learning Optimal Linear Precoding for Cell-Free Massive MIMO with GNN
- URL: http://arxiv.org/abs/2406.04456v1
- Date: Thu, 6 Jun 2024 19:29:33 GMT
- Title: Learning Optimal Linear Precoding for Cell-Free Massive MIMO with GNN
- Authors: Benjamin Parlier, Lou Salaün, Hong Yang,
- Abstract summary: We develop a graph neural network (GNN) to compute, within a time budget of 1 to 2 milliseconds required by practical systems.
We show that it achieves near optimal spectral efficiency in a range of scenarios with different number of APs and UEs.
- Score: 15.271970287767164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a graph neural network (GNN) to compute, within a time budget of 1 to 2 milliseconds required by practical systems, the optimal linear precoder (OLP) maximizing the minimal downlink user data rate for a Cell-Free Massive MIMO system - a key 6G wireless technology. The state-of-the-art method is a bisection search on second order cone programming feasibility test (B-SOCP) which is a magnitude too slow for practical systems. Our approach relies on representing OLP as a node-level prediction task on a graph. We construct a graph that accurately captures the interdependence relation between access points (APs) and user equipments (UEs), and the permutation equivariance of the Max-Min problem. Our neural network, named OLP-GNN, is trained on data obtained by B-SOCP. We tailor the OLP-GNN size, together with several artful data preprocessing and postprocessing methods to meet the runtime requirement. We show by extensive simulations that it achieves near optimal spectral efficiency in a range of scenarios with different number of APs and UEs, and for both line-of-sight and non-line-of-sight radio propagation environments.
Related papers
- PDHG-Unrolled Learning-to-Optimize Method for Large-Scale Linear Programming [36.13745722329505]
We propose an FOM-unrolled neural network (NN) called PDHG-Net to solve large-scale linear programming problems.
Experiments show that our approach can accelerate solving, achieving up to a 3$times$ speedup compared to FOMs for large-scale LP problems.
arXiv Detail & Related papers (2024-06-04T02:39:42Z) - Hybrid-Task Meta-Learning: A Graph Neural Network Approach for Scalable and Transferable Bandwidth Allocation [46.342827102556896]
We develop a deep learning-based bandwidth allocation policy that is scalable with the number of users and transferable to different communication scenarios.
To support scalability, the bandwidth allocation policy is represented by a graph neural network (GNN)
We develop a hybrid-task meta-learning algorithm that trains the initial parameters of the GNN with different communication scenarios.
arXiv Detail & Related papers (2023-12-23T04:25:12Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
arXiv Detail & Related papers (2021-08-03T14:26:14Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
We propose JUMBO, an MBO algorithm that sidesteps limitations by querying additional data.
We show that it achieves no-regret under conditions analogous to GP-UCB.
Empirically, we demonstrate significant performance improvements over existing approaches on two real-world optimization problems.
arXiv Detail & Related papers (2021-06-02T05:03:38Z) - Device Sampling for Heterogeneous Federated Learning: Theory,
Algorithms, and Implementation [24.084053136210027]
We develop a sampling methodology based on graph sequential convolutional networks (GCNs)
We find that our methodology while sampling less than 5% of all devices outperforms conventional federated learning (FedL) substantially both in terms of trained model accuracy and required resource utilization.
arXiv Detail & Related papers (2021-01-04T05:59:50Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
This paper applies learning to the two key sub-tasks of a MIP solver, generating a high-quality joint variable assignment, and bounding the gap in objective value between that assignment and an optimal one.
Our approach constructs two corresponding neural network-based components, Neural Diving and Neural Branching, to use in a base MIP solver such as SCIP.
We evaluate our approach on six diverse real-world datasets, including two Google production datasets and MIPLIB, by training separate neural networks on each.
arXiv Detail & Related papers (2020-12-23T09:33:11Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.