論文の概要: Image steganography based on generative implicit neural representation
- arxiv url: http://arxiv.org/abs/2406.01918v1
- Date: Tue, 4 Jun 2024 03:00:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 20:13:20.290892
- Title: Image steganography based on generative implicit neural representation
- Title(参考訳): 生成的暗黙的神経表現に基づく画像ステガノグラフィー
- Authors: Zhong Yangjie, Liu Jia, Ke Yan, Liu Meiqi,
- Abstract要約: 本稿では,生成的暗黙的神経表現に基づく画像ステガノグラフィーを提案する。
ニューラルネットワークをメッセージ抽出器として固定することにより、トレーニング負荷を画像自体に効果的にリダイレクトする。
メッセージ抽出の精度は、100%の印象的なマークを得た。
- 参考スコア(独自算出の注目度): 2.2972561982722346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of advanced steganography, the scale of the model typically correlates directly with the resolution of the fundamental grid, necessitating the training of a distinct neural network for message extraction. This paper proposes an image steganography based on generative implicit neural representation. This approach transcends the constraints of image resolution by portraying data as continuous functional expressions. Notably, this method permits the utilization of a diverse array of multimedia data as cover images, thereby broadening the spectrum of potential carriers. Additionally, by fixing a neural network as the message extractor, we effectively redirect the training burden to the image itself, resulting in both a reduction in computational overhead and an enhancement in steganographic speed. This approach also circumvents potential transmission challenges associated with the message extractor. Experimental findings reveal that this methodology achieves a commendable optimization efficiency, achieving a completion time of just 3 seconds for 64x64 dimensional images, while concealing only 1 bpp of information. Furthermore, the accuracy of message extraction attains an impressive mark of 100%.
- Abstract(参考訳): 高度なステガノグラフィーの領域では、モデルのスケールは通常、基本格子の解像度と直接相関し、メッセージ抽出のために異なるニューラルネットワークのトレーニングを必要とする。
本稿では,生成的暗黙的神経表現に基づく画像ステガノグラフィーを提案する。
このアプローチは、データを連続関数表現として表現することで、画像解像度の制約を超越する。
特に,本手法では,多種多様なマルチメディアデータをカバー画像として利用し,キャリヤのスペクトルを拡大する。
さらに,ニューラルネットワークをメッセージ抽出器として固定することにより,トレーニング負荷を画像自体に効果的にリダイレクトする。
このアプローチはまた、メッセージ抽出器に関連する潜在的な送信課題を回避する。
実験結果から,64x64次元画像に対して3秒の完了時間を実現するとともに,1bppの情報を隠蔽する。
さらに、メッセージ抽出の精度は、100%の印象的なマークを得られる。
関連論文リスト
- Generative Image Steganography Based on Point Cloud [2.141273115179375]
本稿では,点雲表現に基づく画像ステガノグラフィーを提案する。
実際のニーズに応じて任意の解像度で画像を生成することができ、画像ステガノグラフィーのための明示的なデータの必要性を省略することができる。
実験により, このスキームによって生成されたステガノグラフ画像は, 画像品質が極めて高く, メッセージ抽出精度が99%以上に達することが示された。
論文 参考訳(メタデータ) (2024-10-15T15:06:13Z) - UnSegGNet: Unsupervised Image Segmentation using Graph Neural Networks [9.268228808049951]
この研究は、教師なし医療画像とコンピュータビジョンの幅広い分野に貢献する。
これは、現実世界の課題に沿うイメージセグメンテーションのための革新的な方法論である。
提案手法は,医用画像,リモートセンシング,物体認識など,多様な応用の可能性を秘めている。
論文 参考訳(メタデータ) (2024-05-09T19:02:00Z) - Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis [65.7968515029306]
PGPIS(Pose-Guided Person Image Synthesis)のためのCFLD(Coarse-to-Fine Latent Diffusion)法を提案する。
認識修正デコーダは、学習可能なクエリの集合を段階的に洗練し、粗いプロンプトとして人物画像の意味的理解を抽出するように設計されている。
論文 参考訳(メタデータ) (2024-02-28T06:07:07Z) - Source Identification: A Self-Supervision Task for Dense Prediction [8.744460886823322]
我々は、ソース識別(SI)と呼ばれる新しいセルフスーパービジョンタスクを提案する。
合成画像は、複数のソースイメージを融合させて生成され、融合された画像を考えると、ネットワークのタスクは元のイメージを再構築することである。
脳腫瘍分節と白質高強度分節という2つの医療画像分節課題に対して,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-07-05T12:27:58Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Research on facial expression recognition based on Multimodal data
fusion and neural network [2.5431493111705943]
このアルゴリズムはマルチモーダルデータに基づいており、顔画像、画像の方向勾配のヒストグラム、顔のランドマークを入力とする。
実験結果から, マルチモーダルデータの相補性により, 精度, 堅牢性, 検出速度が大幅に向上したことがわかった。
論文 参考訳(メタデータ) (2021-09-26T23:45:40Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Self-Loop Uncertainty: A Novel Pseudo-Label for Semi-Supervised Medical
Image Segmentation [30.644905857223474]
本稿では,医療画像セグメンテーションのためのラベル付きデータと大量のラベル付き画像を用いて,ニューラルネットワークを訓練するための半教師付きアプローチを提案する。
未ラベル画像に対する新たな擬似ラベル(いわゆる自己ループ不確実性)を基盤として、トレーニングセットを増強し、セグメンテーション精度を高める。
論文 参考訳(メタデータ) (2020-07-20T02:52:07Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。