論文の概要: Nutrition Estimation for Dietary Management: A Transformer Approach with Depth Sensing
- arxiv url: http://arxiv.org/abs/2406.01938v1
- Date: Tue, 4 Jun 2024 03:45:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 20:03:30.973357
- Title: Nutrition Estimation for Dietary Management: A Transformer Approach with Depth Sensing
- Title(参考訳): 栄養管理のための栄養推定 : 深度センシングを用いたトランスフォーマーアプローチ
- Authors: Zhengyi Kwan, Wei Zhang, Zhengkui Wang, Aik Beng Ng, Simon See,
- Abstract要約: 栄養推定のためのトランスフォーマーネットワークであるNuNetを提案する。
我々は,2種類の機能融合モジュールとともに,マルチスケールエンコーダとデコーダを設計,実装した。
実験により,NuNetは栄養推定において,その変種および既存ソリューションを著しく上回っていることが明らかとなった。
- 参考スコア(独自算出の注目度): 11.292860735389253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nutrition estimation is crucial for effective dietary management and overall health and well-being. Existing methods often struggle with sub-optimal accuracy and can be time-consuming. In this paper, we propose NuNet, a transformer-based network designed for nutrition estimation that utilizes both RGB and depth information from food images. We have designed and implemented a multi-scale encoder and decoder, along with two types of feature fusion modules, specialized for estimating five nutritional factors. These modules effectively balance the efficiency and effectiveness of feature extraction with flexible usage of our customized attention mechanisms and fusion strategies. Our experimental study shows that NuNet outperforms its variants and existing solutions significantly for nutrition estimation. It achieves an error rate of 15.65%, the lowest known to us, largely due to our multi-scale architecture and fusion modules. This research holds practical values for dietary management with huge potential for transnational research and deployment and could inspire other applications involving multiple data types with varying degrees of importance.
- Abstract(参考訳): 栄養推定は、効果的な食事管理と全体の健康と幸福のために重要である。
既存の手法は、しばしば準最適精度と闘い、時間を要することがある。
本稿では,食品画像からのRGB情報と深度情報の両方を利用した栄養推定のためのトランスフォーマーネットワークであるNuNetを提案する。
我々は,5つの栄養因子を推定する機能融合モジュールとともに,マルチスケールエンコーダとデコーダを設計,実装した。
これらのモジュールは、特徴抽出の効率性と有効性と、カスタマイズされた注意機構と融合戦略の柔軟な利用とを効果的にバランスさせる。
実験により,NuNetは栄養推定において,その変種および既存ソリューションを著しく上回っていることが明らかとなった。
エラー率は15.65%で、最も低いのは我々のマルチスケールアーキテクチャと融合モジュールのためである。
本研究は、全国的な研究・展開の可能性を秘めた食事管理の実践的価値を持ち、様々な重要性を持つ複数のデータ型を含む他のアプリケーションに刺激を与えることができる。
関連論文リスト
- RoDE: Linear Rectified Mixture of Diverse Experts for Food Large Multi-Modal Models [96.43285670458803]
Uni-Foodは、さまざまな食品ラベルを持つ10万以上の画像からなる統合食品データセットである。
Uni-Foodは、食品データ分析に対するより包括的なアプローチを提供するように設計されている。
本稿では,食品関連マルチタスキングの課題に対処するため,新しいリニア・リクティフィケーション・ミックス・オブ・ディバース・エキスパート (RoDE) アプローチを提案する。
論文 参考訳(メタデータ) (2024-07-17T16:49:34Z) - NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
自己申告法はしばしば不正確であり、重大な偏見に悩まされる。
近年、食品画像から栄養情報を予測するためにコンピュータビジョン予測システムを用いた研究が進められている。
本稿では,様々なニューラルネットワークアーキテクチャを活用することにより,食事摂取量推定の有効性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-05-13T14:56:55Z) - Dietary Assessment with Multimodal ChatGPT: A Systematic Analysis [17.333822848423708]
本研究は、食事アセスメントの領域におけるマルチモーダルChatGPTの適用について検討する。
モデルを特定の言語プロンプトで導くことで、GPT-4Vは、米やパンのような一般的な主食を認識することから、バンクーやウグリといった地域料理を正確に識別するようになる。
GPT-4Vは、周囲の物体をスケール基準として利用し、食品の部位サイズを推定し、食品の重量を栄養分に翻訳する精度をさらに高める。
論文 参考訳(メタデータ) (2023-12-14T01:26:45Z) - DPF-Nutrition: Food Nutrition Estimation via Depth Prediction and Fusion [0.8579795118452238]
DPF-Nutritionは単分子画像を用いたエンドツーエンドの栄養推定法である。
DPF-Nutritionでは,深度マップを生成するための深度予測モジュールを導入し,食品部分推定の精度を向上した。
また,単分子画像と予測深度情報を組み合わせたRGB-D融合モジュールを設計した。
論文 参考訳(メタデータ) (2023-10-18T04:23:05Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
食事の正確な摂取推定は、健康的な食事を支援するための政策やプログラムを伝える上で重要である。
最近の研究は、コンピュータービジョンと機械学習を使用して、食物画像から食事摂取を自動的に推定することに焦点を当てている。
我々は,84,984個の合成2D食品画像と関連する食事情報を用いた最初の大規模データセットであるNutritionVerse-Synthを紹介した。
また、リアルなイメージデータセットであるNutritionVerse-Realを収集し、リアル性を評価するために、251の料理の889のイメージを含む。
論文 参考訳(メタデータ) (2023-09-14T13:29:41Z) - Food Ingredients Recognition through Multi-label Learning [0.0]
ダイエット自動評価システムにおいて, 食材中のさまざまな食材を識別する能力は重要な決定要因である。
我々は,料理画像中の任意の成分を検出するために,深層多ラベル学習アプローチを採用し,最先端のニューラルネットワークを評価した。
論文 参考訳(メタデータ) (2022-10-24T10:18:26Z) - Vision-Based Food Analysis for Automatic Dietary Assessment [49.32348549508578]
本総説では, 食品画像分析, 容積推定, 栄養素抽出の3段階からなる, 統合型ビジョンベース食事評価(VBDA)の枠組みを概説する。
深層学習により、VBDAは徐々にエンドツーエンドの実装へと移行し、単一のネットワークに食品画像を適用して栄養を直接見積もる。
論文 参考訳(メタデータ) (2021-08-06T05:46:01Z) - ISIA Food-500: A Dataset for Large-Scale Food Recognition via Stacked
Global-Local Attention Network [50.7720194859196]
ウィキペディアのリストから500のカテゴリと399,726の画像を含むデータセットISIA Food-500を紹介する。
このデータセットは、既存の一般的なベンチマークデータセットをカテゴリカバレッジとデータボリュームで上回る。
食品認識のための2つのサブネットワークからなるグローバルローカルアテンションネットワークを提案する。
論文 参考訳(メタデータ) (2020-08-13T02:48:27Z) - Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images
and Recipes with Semantic Consistency and Attention Mechanism [70.85894675131624]
画像とレシピを共通の特徴空間に埋め込み、対応する画像とレシピの埋め込みが互いに近接するように学習する。
本稿では,2つのモダリティの埋め込みを正規化するためのセマンティック・一貫性とアテンション・ベース・ネットワーク(SCAN)を提案する。
食品画像や調理レシピの最先端のクロスモーダル検索戦略を,かなりの差で達成できることが示される。
論文 参考訳(メタデータ) (2020-03-09T07:41:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。