Process-Driven Autoformalization in Lean 4
- URL: http://arxiv.org/abs/2406.01940v2
- Date: Mon, 14 Oct 2024 03:46:00 GMT
- Title: Process-Driven Autoformalization in Lean 4
- Authors: Jianqiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen, Hui Jin, Jipeng Zhang, Haiming Wang, Zhicheng Yang, Jing Tang, Zhijiang Guo,
- Abstract summary: We develop a benchmark to evaluate the autoformalization capabilities of large language models.
We also introduce a model that leverages the precise feedback from Lean 4 compilers to enhance autoformalization.
Our experiments demonstrate that the PSV method improves autoformalization, enabling higher accuracy using less filtered training data.
- Score: 30.056591518828554
- License:
- Abstract: Autoformalization, the conversion of natural language mathematics into formal languages, offers significant potential for advancing mathematical reasoning. However, existing efforts are limited to formal languages with substantial online corpora and struggle to keep pace with rapidly evolving languages like Lean 4. To bridge this gap, we propose a new benchmark \textbf{Form}alization for \textbf{L}ean~\textbf{4} (\textbf{\name}) designed to evaluate the autoformalization capabilities of large language models (LLMs). This benchmark encompasses a comprehensive assessment of questions, answers, formal statements, and proofs. Additionally, we introduce a \textbf{P}rocess-\textbf{S}upervised \textbf{V}erifier (\textbf{PSV}) model that leverages the precise feedback from Lean 4 compilers to enhance autoformalization. Our experiments demonstrate that the PSV method improves autoformalization, enabling higher accuracy using less filtered training data. Furthermore, when fine-tuned with data containing detailed process information, PSV can leverage the data more effectively, leading to more significant improvements in autoformalization for Lean 4. Our dataset and code are available at \url{https://github.com/rookie-joe/PDA}.
Related papers
- FormalAlign: Automated Alignment Evaluation for Autoformalization [12.674957231226871]
textscFormalAlign trains on both the autoformalization sequence generation task and the representational alignment between input and output.
evaluated across four benchmarks, textscFormalAlign demonstrates superior performance.
This effective alignment evaluation significantly reduces the need for manual verification.
arXiv Detail & Related papers (2024-10-14T03:58:35Z) - Herald: A Natural Language Annotated Lean 4 Dataset [15.42247133378869]
This paper introduces a novel framework for translating the Mathlib4 corpus (a unified library of mathematics in formal language Lean 4) into natural language.
We present the results of this pipeline on Mathlib4 as Herald (Hierarchy and Retrieval-based Translated Lean)
We also propose the Herald Translator, which is fine-tuned on Herald.
arXiv Detail & Related papers (2024-10-09T10:11:24Z) - FactAlign: Long-form Factuality Alignment of Large Language Models [35.067998820937284]
Large language models have demonstrated significant potential as the next-generation information access engines.
We propose FactAlign, a novel alignment framework designed to enhance the factuality of long-form responses.
Our experiments on open-domain prompts and information-seeking questions demonstrate that FactAlign significantly improves the factual accuracy of LLM responses.
arXiv Detail & Related papers (2024-10-02T16:03:13Z) - Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
We propose a retrieval augmented generation (RAG) framework backed by a large language model (LLM) to correct the output of a smaller model for the linguistic task of morphological glossing.
We leverage linguistic information to make up for the lack of data and trainable parameters, while allowing for inputs from written descriptive grammars interpreted and distilled through an LLM.
We show that a compact, RAG-supported model is highly effective in data-scarce settings, achieving a new state-of-the-art for this task and our target languages.
arXiv Detail & Related papers (2024-10-01T04:20:14Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Lean Workbook: A large-scale Lean problem set formalized from natural language math problems [50.22847430754973]
Large language models are not good at math theorem proving using formal languages like Lean.
A significant challenge in this area is the scarcity of training data available in these formal languages.
We propose a novel pipeline that iteratively generates and filters synthetic data to translate natural language mathematical problems into Lean 4 statements.
arXiv Detail & Related papers (2024-06-06T08:25:43Z) - Calibrating the Confidence of Large Language Models by Eliciting Fidelity [52.47397325111864]
Large language models optimized with techniques like RLHF have achieved good alignment in being helpful and harmless.
Post-alignment, these language models often exhibit overconfidence, where the expressed confidence does not accurately calibrate with their correctness rate.
We propose a plug-and-play method to estimate the confidence of language models.
arXiv Detail & Related papers (2024-04-03T11:36:12Z) - RegaVAE: A Retrieval-Augmented Gaussian Mixture Variational Auto-Encoder
for Language Modeling [79.56442336234221]
We introduce RegaVAE, a retrieval-augmented language model built upon the variational auto-encoder (VAE)
It encodes the text corpus into a latent space, capturing current and future information from both source and target text.
Experimental results on various datasets demonstrate significant improvements in text generation quality and hallucination removal.
arXiv Detail & Related papers (2023-10-16T16:42:01Z) - Large Language Models Meet Knowledge Graphs to Answer Factoid Questions [57.47634017738877]
We propose a method for exploring pre-trained Text-to-Text Language Models enriched with additional information from Knowledge Graphs.
We procure easily interpreted information with Transformer-based models through the linearization of the extracted subgraphs.
Final re-ranking of the answer candidates with the extracted information boosts Hits@1 scores of the pre-trained text-to-text language models by 4-6%.
arXiv Detail & Related papers (2023-10-03T15:57:00Z) - Autoformalization with Large Language Models [22.86710743804944]
A successful autoformalization system could advance the fields of formal verification, program synthesis, and artificial intelligence.
We show large language models provide new prospects towards this goal.
Our methodology results in a new state-of-the-art result on the MiniF2F theorem proving benchmark, improving the proof rate from $29.6%$ to $35.2%$.
arXiv Detail & Related papers (2022-05-25T09:53:30Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.