Autoformalization with Large Language Models
- URL: http://arxiv.org/abs/2205.12615v1
- Date: Wed, 25 May 2022 09:53:30 GMT
- Title: Autoformalization with Large Language Models
- Authors: Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats,
Mateja Jamnik, Christian Szegedy
- Abstract summary: A successful autoformalization system could advance the fields of formal verification, program synthesis, and artificial intelligence.
We show large language models provide new prospects towards this goal.
Our methodology results in a new state-of-the-art result on the MiniF2F theorem proving benchmark, improving the proof rate from $29.6%$ to $35.2%$.
- Score: 22.86710743804944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autoformalization is the process of automatically translating from natural
language mathematics to formal specifications and proofs. A successful
autoformalization system could advance the fields of formal verification,
program synthesis, and artificial intelligence. While the long-term goal of
autoformalization seemed elusive for a long time, we show large language models
provide new prospects towards this goal. We make the surprising observation
that LLMs can correctly translate a significant portion ($25.3\%$) of
mathematical competition problems perfectly to formal specifications in
Isabelle/HOL. We demonstrate the usefulness of this process by improving a
previously introduced neural theorem prover via training on these
autoformalized theorems. Our methodology results in a new state-of-the-art
result on the MiniF2F theorem proving benchmark, improving the proof rate from
$29.6\%$ to $35.2\%$.
Related papers
- Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation [71.32761934724867]
This work proposes Alchemy, a framework for data synthesis that constructs formal theorems through symbolic mutation.
For each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it.
As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M.
arXiv Detail & Related papers (2024-10-21T08:04:21Z) - Lean-STaR: Learning to Interleave Thinking and Proving [53.923617816215774]
We present Lean-STaR, a framework for training language models to produce informal thoughts prior to each step of a proof.
Lean-STaR achieves state-of-the-art results on the miniF2F-test benchmark within the Lean theorem proving environment.
arXiv Detail & Related papers (2024-07-14T01:43:07Z) - Autoformalizing Euclidean Geometry [74.72212706513318]
We introduce a neuro-symbolic framework for autoformalizing Euclidean geometry.
One challenge is that informal proofs rely on diagrams, leaving gaps in texts that are hard to formalize.
We provide automatic semantic evaluation for autoformalized theorem statements.
arXiv Detail & Related papers (2024-05-27T14:35:10Z) - Don't Trust: Verify -- Grounding LLM Quantitative Reasoning with Autoformalization [45.439933713342256]
Large language models (LLM) are becoming increasingly capable of solving mathematical quantitative reasoning problems.
We leverage the fact that if the training corpus of LLMs contained sufficiently many examples of formal mathematics, they can be prompted to translate into formal Isabelle code.
This provides a mechanism to automatically reject solutions whose formalized versions are inconsistent within themselves or with the formalized problem statement.
arXiv Detail & Related papers (2024-03-26T22:01:13Z) - TRIGO: Benchmarking Formal Mathematical Proof Reduction for Generative
Language Models [68.65075559137608]
We propose TRIGO, an ATP benchmark that not only requires a model to reduce a trigonometric expression with step-by-step proofs but also evaluates a generative LM's reasoning ability on formulas.
We gather trigonometric expressions and their reduced forms from the web, annotate the simplification process manually, and translate it into the Lean formal language system.
We develop an automatic generator based on Lean-Gym to create dataset splits of varying difficulties and distributions in order to thoroughly analyze the model's generalization ability.
arXiv Detail & Related papers (2023-10-16T08:42:39Z) - A New Approach Towards Autoformalization [7.275550401145199]
Autoformalization is the task of translating natural language mathematics into a formal language that can be verified by a program.
Research paper mathematics requires large amounts of background and context.
We propose an avenue towards tackling autoformalization for research-level mathematics, by breaking the task into easier and more approachable subtasks.
arXiv Detail & Related papers (2023-10-12T00:50:24Z) - ProofNet: Autoformalizing and Formally Proving Undergraduate-Level
Mathematics [7.607254619341369]
We introduce ProofNet, a benchmark for autoformalization and formal proving of undergraduate-level mathematics.
The ProofNet benchmarks consists of 371 examples, each consisting of a formal theorem statement in Lean 3.
We report baseline results on statement autoformalization via in-context learning.
arXiv Detail & Related papers (2023-02-24T03:28:46Z) - Towards a Mathematics Formalisation Assistant using Large Language
Models [5.485439959027125]
We explore the abilities of a large language model (Codex) to help with formalisation in the Lean theorem prover.
Codex is able to formalise short mathematical statements at undergrad level with nearly 75% accuracy for $120$ theorem statements.
We show that with a new prompting strategy Codex can formalise these proofs in natural language with at least one out of twelve Codex completion being easy to repair into a complete proof.
arXiv Detail & Related papers (2022-11-14T16:52:32Z) - Generative Language Modeling for Automated Theorem Proving [94.01137612934842]
This work is motivated by the possibility that a major limitation of automated theorem provers compared to humans might be addressable via generation from language models.
We present an automated prover and proof assistant, GPT-f, for the Metamath formalization language, and analyze its performance.
arXiv Detail & Related papers (2020-09-07T19:50:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.