Calibrating the Confidence of Large Language Models by Eliciting Fidelity
- URL: http://arxiv.org/abs/2404.02655v2
- Date: Wed, 09 Oct 2024 08:51:28 GMT
- Title: Calibrating the Confidence of Large Language Models by Eliciting Fidelity
- Authors: Mozhi Zhang, Mianqiu Huang, Rundong Shi, Linsen Guo, Chong Peng, Peng Yan, Yaqian Zhou, Xipeng Qiu,
- Abstract summary: Large language models optimized with techniques like RLHF have achieved good alignment in being helpful and harmless.
Post-alignment, these language models often exhibit overconfidence, where the expressed confidence does not accurately calibrate with their correctness rate.
We propose a plug-and-play method to estimate the confidence of language models.
- Score: 52.47397325111864
- License:
- Abstract: Large language models optimized with techniques like RLHF have achieved good alignment in being helpful and harmless. However, post-alignment, these language models often exhibit overconfidence, where the expressed confidence does not accurately calibrate with their correctness rate. In this paper, we decompose the language model confidence into the \textit{Uncertainty} about the question and the \textit{Fidelity} to the answer generated by language models. Then, we propose a plug-and-play method to estimate the confidence of language models. Our method has shown good calibration performance by conducting experiments with 6 RLHF-LMs on four MCQA datasets. Moreover, we propose two novel metrics, IPR and CE, to evaluate the calibration of the model, and we have conducted a detailed discussion on \textit{Truly Well-Calibrated Confidence}. Our method could serve as a strong baseline, and we hope that this work will provide some insights into the model confidence calibration.
Related papers
- Calibrating Large Language Models Using Their Generations Only [44.26441565763495]
APRICOT is a method to set confidence targets and train an additional model that predicts an LLM's confidence based on its textual input and output alone.
It is conceptually simple, does not require access to the target model beyond its output, does not interfere with the language generation, and has a multitude of potential usages.
We show how our approach performs competitively in terms of calibration error for white-box and black-box LLMs on closed-book question-answering to detect incorrect LLM answers.
arXiv Detail & Related papers (2024-03-09T17:46:24Z) - $C^3$: Confidence Calibration Model Cascade for Inference-Efficient
Cross-Lingual Natural Language Understanding [28.853593305486832]
Cross-lingual natural language understanding (NLU) is a critical task in natural language processing (NLP)
Recent advancements have seen multilingual pre-trained language models (mPLMs) significantly enhance the performance of these tasks.
Existing model cascade methods seek to enhance inference efficiency by greedily selecting the lightest model capable of processing the current input from a variety of models.
arXiv Detail & Related papers (2024-02-25T05:07:56Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - Calibrating Long-form Generations from Large Language Models [34.72041258464477]
Large Language Models' (LLMs) confidence scores should align with the actual likelihood of its responses being correct.
Current confidence elicitation methods and calibration metrics rely on a binary true/false assessment of response correctness.
We introduce a unified calibration framework, in which both the correctness of the LLMs' responses and their associated confidence levels are treated as distributions across a range of scores.
arXiv Detail & Related papers (2024-02-09T17:00:32Z) - On the Calibration of Large Language Models and Alignment [63.605099174744865]
Confidence calibration serves as a crucial tool for gauging the reliability of deep models.
We conduct a systematic examination of the calibration of aligned language models throughout the entire construction process.
Our work sheds light on whether popular LLMs are well-calibrated and how the training process influences model calibration.
arXiv Detail & Related papers (2023-11-22T08:57:55Z) - Fine-tuning Language Models for Factuality [96.5203774943198]
Large pre-trained language models (LLMs) have led to their widespread use, sometimes even as a replacement for traditional search engines.
Yet language models are prone to making convincing but factually inaccurate claims, often referred to as 'hallucinations'
In this work, we fine-tune language models to be more factual, without human labeling.
arXiv Detail & Related papers (2023-11-14T18:59:15Z) - Ask Again, Then Fail: Large Language Models' Vacillations in Judgment [28.74246375289661]
We observe that current conversational language models often waver in their judgments when faced with follow-up questions.
We introduce a textscFollow-up Questioning Mechanism along with two metrics to quantify this inconsistency.
We develop a training-based framework textscUnwavering-FQ that teaches language models to maintain their originally correct judgments.
arXiv Detail & Related papers (2023-10-03T16:08:41Z) - Just Ask for Calibration: Strategies for Eliciting Calibrated Confidence
Scores from Language Models Fine-Tuned with Human Feedback [91.22679548111127]
A trustworthy real-world prediction system should produce well-calibrated confidence scores.
We show that verbalized confidences emitted as output tokens are typically better-calibrated than the model's conditional probabilities.
arXiv Detail & Related papers (2023-05-24T10:12:33Z) - How Can We Know When Language Models Know? On the Calibration of
Language Models for Question Answering [80.82194311274694]
We examine the question "how can we know when language models know, with confidence, the answer to a particular query?"
We examine three strong generative models -- T5, BART, and GPT-2 -- and study whether their probabilities on QA tasks are well calibrated.
We then examine methods to calibrate such models to make their confidence scores correlate better with the likelihood of correctness.
arXiv Detail & Related papers (2020-12-02T03:53:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.