Improving Generalization in Aerial and Terrestrial Mobile Robots Control Through Delayed Policy Learning
- URL: http://arxiv.org/abs/2406.01952v1
- Date: Tue, 4 Jun 2024 04:16:38 GMT
- Title: Improving Generalization in Aerial and Terrestrial Mobile Robots Control Through Delayed Policy Learning
- Authors: Ricardo B. Grando, Raul Steinmetz, Victor A. Kich, Alisson H. Kolling, Pablo M. Furik, Junior C. de Jesus, Bruna V. Guterres, Daniel T. Gamarra, Rodrigo S. Guerra, Paulo L. J. Drews-Jr,
- Abstract summary: Deep Reinforcement Learning (DRL) has emerged as a promising approach to enhancing motion control and decision-making.
This paper explores the impact of the Delayed Policy Updates (DPU) technique on fostering generalization to new situations.
- Score: 0.19638749905454383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Reinforcement Learning (DRL) has emerged as a promising approach to enhancing motion control and decision-making through a wide range of robotic applications. While prior research has demonstrated the efficacy of DRL algorithms in facilitating autonomous mapless navigation for aerial and terrestrial mobile robots, these methods often grapple with poor generalization when faced with unknown tasks and environments. This paper explores the impact of the Delayed Policy Updates (DPU) technique on fostering generalization to new situations, and bolstering the overall performance of agents. Our analysis of DPU in aerial and terrestrial mobile robots reveals that this technique significantly curtails the lack of generalization and accelerates the learning process for agents, enhancing their efficiency across diverse tasks and unknown scenarios.
Related papers
- Deep Reinforcement Learning with Enhanced PPO for Safe Mobile Robot Navigation [0.6554326244334868]
This study investigates the application of deep reinforcement learning to train a mobile robot for autonomous navigation in a complex environment.
The robot utilizes LiDAR sensor data and a deep neural network to generate control signals guiding it toward a specified target while avoiding obstacles.
arXiv Detail & Related papers (2024-05-25T15:08:36Z) - Diffusion-Reinforcement Learning Hierarchical Motion Planning in Adversarial Multi-agent Games [6.532258098619471]
We focus on a motion planning task for an evasive target in a partially observable multi-agent adversarial pursuit-evasion games (PEG)
These pursuit-evasion problems are relevant to various applications, such as search and rescue operations and surveillance robots.
We propose a hierarchical architecture that integrates a high-level diffusion model to plan global paths responsive to environment data.
arXiv Detail & Related papers (2024-03-16T03:53:55Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Deterministic and Stochastic Analysis of Deep Reinforcement Learning for
Low Dimensional Sensing-based Navigation of Mobile Robots [0.41562334038629606]
This paper presents a comparative analysis of two Deep-RL techniques - Deep Deterministic Policy Gradients (DDPG) and Soft Actor-Critic (SAC)
We aim to contribute by showing how the neural network architecture influences the learning itself, presenting quantitative results based on the time and distance of aerial mobile robots for each approach.
arXiv Detail & Related papers (2022-09-13T22:28:26Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
Reinforcement learning (RL) algorithms hold the promise of enabling autonomous skill acquisition for robotic systems.
In practice, real-world robotic RL typically requires time consuming data collection and frequent human intervention to reset the environment.
In this work, we study how these challenges can be tackled by effective utilization of diverse offline datasets collected from previously seen tasks.
arXiv Detail & Related papers (2022-07-11T08:31:22Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
It is crucial to optimize the performance of DRL-based agents while providing guarantees about their behavior.
This paper presents a novel technique for incorporating domain-expert knowledge into a constrained DRL training loop.
Our experiments demonstrate that using our approach to leverage expert knowledge dramatically improves the safety and the performance of the agent.
arXiv Detail & Related papers (2022-06-20T07:19:38Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - Self-Imitation Learning by Planning [3.996275177789895]
Imitation learning (IL) enables robots to acquire skills quickly by transferring expert knowledge.
In long-horizon motion planning tasks, a challenging problem in deploying IL and RL methods is how to generate and collect massive, broadly distributed data.
We propose self-imitation learning by planning (SILP), where demonstration data are collected automatically by planning on the visited states from the current policy.
SILP is inspired by the observation that successfully visited states in the early reinforcement learning stage are collision-free nodes in the graph-search based motion planner.
arXiv Detail & Related papers (2021-03-25T13:28:38Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z) - Mobile Robot Path Planning in Dynamic Environments through Globally
Guided Reinforcement Learning [12.813442161633116]
We introduce a globally guided learning reinforcement approach (G2RL) to solve the multi-robot planning problem.
G2RL incorporates a novel path reward structure that generalizes to arbitrary environments.
We evaluate our method across different map types, obstacle densities and the number of robots.
arXiv Detail & Related papers (2020-05-11T20:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.