Self-Imitation Learning by Planning
- URL: http://arxiv.org/abs/2103.13834v2
- Date: Fri, 26 Mar 2021 21:41:14 GMT
- Title: Self-Imitation Learning by Planning
- Authors: Sha Luo, Hamidreza Kasaei, Lambert Schomaker
- Abstract summary: Imitation learning (IL) enables robots to acquire skills quickly by transferring expert knowledge.
In long-horizon motion planning tasks, a challenging problem in deploying IL and RL methods is how to generate and collect massive, broadly distributed data.
We propose self-imitation learning by planning (SILP), where demonstration data are collected automatically by planning on the visited states from the current policy.
SILP is inspired by the observation that successfully visited states in the early reinforcement learning stage are collision-free nodes in the graph-search based motion planner.
- Score: 3.996275177789895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imitation learning (IL) enables robots to acquire skills quickly by
transferring expert knowledge, which is widely adopted in reinforcement
learning (RL) to initialize exploration. However, in long-horizon motion
planning tasks, a challenging problem in deploying IL and RL methods is how to
generate and collect massive, broadly distributed data such that these methods
can generalize effectively. In this work, we solve this problem using our
proposed approach called {self-imitation learning by planning (SILP)}, where
demonstration data are collected automatically by planning on the visited
states from the current policy. SILP is inspired by the observation that
successfully visited states in the early reinforcement learning stage are
collision-free nodes in the graph-search based motion planner, so we can plan
and relabel robot's own trials as demonstrations for policy learning. Due to
these self-generated demonstrations, we relieve the human operator from the
laborious data preparation process required by IL and RL methods in solving
complex motion planning tasks. The evaluation results show that our SILP method
achieves higher success rates and enhances sample efficiency compared to
selected baselines, and the policy learned in simulation performs well in a
real-world placement task with changing goals and obstacles.
Related papers
- So You Think You Can Scale Up Autonomous Robot Data Collection? [22.7035324720716]
Reinforcement learning (RL) comes with the promise of enabling autonomous data collection.
It remains challenging to scale in the real-world partly due to the significant effort required for environment design and instrumentation.
Imitation learning (IL) methods require little to no environment design effort, but instead require significant human supervision.
arXiv Detail & Related papers (2024-11-04T05:31:35Z) - Meta-Gradient Search Control: A Method for Improving the Efficiency of Dyna-style Planning [8.552540426753]
This paper introduces an online, meta-gradient algorithm that tunes a probability with which states are queried during Dyna-style planning.
Results indicate that our method improves efficiency of the planning process.
arXiv Detail & Related papers (2024-06-27T22:24:46Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Reinforcement Learning in Robotic Motion Planning by Combined
Experience-based Planning and Self-Imitation Learning [7.919213739992465]
High-quality and representative data is essential for both Imitation Learning (IL)- and Reinforcement Learning (RL)-based motion planning tasks.
We propose self-imitation learning by planning plus (SILP+) algorithm, which embeds experience-based planning into the learning architecture.
Various experimental results show that SILP+ achieves better training efficiency higher and more stable success rate in complex motion planning tasks.
arXiv Detail & Related papers (2023-06-11T19:47:46Z) - Efficient Learning of High Level Plans from Play [57.29562823883257]
We present Efficient Learning of High-Level Plans from Play (ELF-P), a framework for robotic learning that bridges motion planning and deep RL.
We demonstrate that ELF-P has significantly better sample efficiency than relevant baselines over multiple realistic manipulation tasks.
arXiv Detail & Related papers (2023-03-16T20:09:47Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
Reinforcement learning (RL) algorithms hold the promise of enabling autonomous skill acquisition for robotic systems.
In practice, real-world robotic RL typically requires time consuming data collection and frequent human intervention to reset the environment.
In this work, we study how these challenges can be tackled by effective utilization of diverse offline datasets collected from previously seen tasks.
arXiv Detail & Related papers (2022-07-11T08:31:22Z) - Efficient Robotic Manipulation Through Offline-to-Online Reinforcement
Learning and Goal-Aware State Information [5.604859261995801]
We propose a unified offline-to-online RL framework that resolves the transition performance drop issue.
We introduce goal-aware state information to the RL agent, which can greatly reduce task complexity and accelerate policy learning.
Our framework achieves great training efficiency and performance compared with the state-of-the-art methods in multiple robotic manipulation tasks.
arXiv Detail & Related papers (2021-10-21T05:34:25Z) - Active Learning of Abstract Plan Feasibility [17.689758291966502]
We present an active learning approach to efficiently acquire an APF predictor through task-independent, curious exploration on a robot.
We leverage an infeasible subsequence property to prune candidate plans in the active learning strategy, allowing our system to learn from less data.
In a stacking domain where objects have non-uniform mass distributions, we show that our system permits real robot learning of an APF model in four hundred self-supervised interactions.
arXiv Detail & Related papers (2021-07-01T18:17:01Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
We show that a single robotic arm can learn sparse-reward manipulation policies from pixels.
We show that, given only 10 demonstrations, a single robotic arm can learn sparse-reward manipulation policies from pixels.
arXiv Detail & Related papers (2020-12-14T22:18:39Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
We show that our method, advantage weighted actor critic (AWAC), enables rapid learning of skills with a combination of prior demonstration data and online experience.
Our results show that incorporating prior data can reduce the time required to learn a range of robotic skills to practical time-scales.
arXiv Detail & Related papers (2020-06-16T17:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.