Adaptive Variance Reduction for Stochastic Optimization under Weaker Assumptions
- URL: http://arxiv.org/abs/2406.01959v2
- Date: Wed, 23 Oct 2024 14:49:39 GMT
- Title: Adaptive Variance Reduction for Stochastic Optimization under Weaker Assumptions
- Authors: Wei Jiang, Sifan Yang, Yibo Wang, Lijun Zhang,
- Abstract summary: We introduce a novel adaptive reduction method that achieves an optimal convergence rate of $mathcalO(log T)$ for non- functions.
We also extend the proposed technique to obtain the same optimal rate of $mathcalO(log T)$ for compositional optimization.
- Score: 26.543628010637036
- License:
- Abstract: This paper explores adaptive variance reduction methods for stochastic optimization based on the STORM technique. Existing adaptive extensions of STORM rely on strong assumptions like bounded gradients and bounded function values, or suffer an additional $\mathcal{O}(\log T)$ term in the convergence rate. To address these limitations, we introduce a novel adaptive STORM method that achieves an optimal convergence rate of $\mathcal{O}(T^{-1/3})$ for non-convex functions with our newly designed learning rate strategy. Compared with existing approaches, our method requires weaker assumptions and attains the optimal convergence rate without the additional $\mathcal{O}(\log T)$ term. We also extend the proposed technique to stochastic compositional optimization, obtaining the same optimal rate of $\mathcal{O}(T^{-1/3})$. Furthermore, we investigate the non-convex finite-sum problem and develop another innovative adaptive variance reduction method that achieves an optimal convergence rate of $\mathcal{O}(n^{1/4} T^{-1/2} )$, where $n$ represents the number of component functions. Numerical experiments across various tasks validate the effectiveness of our method.
Related papers
- Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient [40.22217106270146]
Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods.
In composite optimization problems, ZO methods encounter an additional variance called the coordinate-wise variance, which stems from the random estimation.
This paper proposes the Zeroth-order Proximal Double Variance Reduction (ZPDVR) method, which utilizes the averaging trick to reduce both sampling and coordinate-wise variances.
arXiv Detail & Related papers (2024-05-28T02:27:53Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Strictly Low Rank Constraint Optimization -- An Asymptotically
$\mathcal{O}(\frac{1}{t^2})$ Method [5.770309971945476]
We propose a class of non-text and non-smooth problems with textitrank regularization to promote sparsity in optimal solution.
We show that our algorithms are able to achieve a singular convergence of $Ofrac(t2)$, which is exactly same as Nesterov's optimal convergence for first-order methods on smooth convex problems.
arXiv Detail & Related papers (2023-07-04T16:55:41Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - On Stochastic Moving-Average Estimators for Non-Convex Optimization [105.22760323075008]
In this paper, we demonstrate the power of a widely used estimator based on moving average (SEMA) problems.
For all these-the-art results, we also present the results for all these-the-art problems.
arXiv Detail & Related papers (2021-04-30T08:50:24Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.