Zyda: A 1.3T Dataset for Open Language Modeling
- URL: http://arxiv.org/abs/2406.01981v2
- Date: Tue, 3 Sep 2024 19:11:11 GMT
- Title: Zyda: A 1.3T Dataset for Open Language Modeling
- Authors: Yury Tokpanov, Beren Millidge, Paolo Glorioso, Jonathan Pilault, Adam Ibrahim, James Whittington, Quentin Anthony,
- Abstract summary: Zyda is a dataset under a permissive license comprising 1.3 trillion tokens, assembled by integrating several major respected open-source datasets into a single, high-quality corpus.
Our evaluations show that Zyda not only competes favorably with other open datasets like Dolma, FineWeb, and RefinedWeb, but also substantially improves the performance of comparable models from the Pythia suite.
- Score: 10.973515151563427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The size of large language models (LLMs) has scaled dramatically in recent years and their computational and data requirements have surged correspondingly. State-of-the-art language models, even at relatively smaller sizes, typically require training on at least a trillion tokens. This rapid advancement has eclipsed the growth of open-source datasets available for large-scale LLM pretraining. In this paper, we introduce Zyda (Zyphra Dataset), a dataset under a permissive license comprising 1.3 trillion tokens, assembled by integrating several major respected open-source datasets into a single, high-quality corpus. We apply rigorous filtering and deduplication processes, both within and across datasets, to maintain and enhance the quality derived from the original datasets. Our evaluations show that Zyda not only competes favorably with other open datasets like Dolma, FineWeb, and RefinedWeb, but also substantially improves the performance of comparable models from the Pythia suite. Our rigorous data processing methods significantly enhance Zyda's effectiveness, outperforming even the best of its constituent datasets when used independently.
Related papers
- Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - SSE: Multimodal Semantic Data Selection and Enrichment for Industrial-scale Data Assimilation [29.454948190814765]
In recent years, the data collected for artificial intelligence has grown to an unmanageable amount.
We propose a framework to select the most semantically diverse and important dataset portion.
We further semantically enrich it by discovering meaningful new data from a massive unlabeled data pool.
arXiv Detail & Related papers (2024-09-20T19:17:52Z) - Scaling Retrieval-Based Language Models with a Trillion-Token Datastore [85.4310806466002]
We find that increasing the size of the datastore used by a retrieval-based LM monotonically improves language modeling and several downstream tasks without obvious saturation.
By plotting compute-optimal scaling curves with varied datastore, model, and pretraining data sizes, we show that using larger datastores can significantly improve model performance for the same training compute budget.
arXiv Detail & Related papers (2024-07-09T08:27:27Z) - Better Synthetic Data by Retrieving and Transforming Existing Datasets [63.875064274379824]
We introduce DataTune, a method to make better use of publicly available datasets to improve automatic dataset generation.
On a diverse set of language-based tasks, we find that finetuning language models via DataTune improves over a few-shot prompting baseline by 49%.
We find that dataset transformation significantly increases the diversity and difficulty of generated data on many tasks.
arXiv Detail & Related papers (2024-04-22T17:15:32Z) - GeMQuAD : Generating Multilingual Question Answering Datasets from Large Language Models using Few Shot Learning [4.8838210812204235]
In this paper, we propose GeMQuAD - a semi-supervised learning approach, applied to a dataset generated through ICL with just one example in the target language.
We iteratively identify high-quality data to enhance model performance, especially for low-resource multilingual setting.
Our framework outperforms the machine translation-augmented model by 0.22/1.68 F1/EM points for Hindi and 0.82/1.37 F1/EM points for Spanish on the MLQA dataset.
arXiv Detail & Related papers (2024-04-14T06:55:42Z) - Retrieval-Augmented Data Augmentation for Low-Resource Domain Tasks [66.87070857705994]
In low-resource settings, the amount of seed data samples to use for data augmentation is very small.
We propose a novel method that augments training data by incorporating a wealth of examples from other datasets.
This approach can ensure that the generated data is not only relevant but also more diverse than what could be achieved using the limited seed data alone.
arXiv Detail & Related papers (2024-02-21T02:45:46Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
We introduce a self-evolving mechanism that allows the model itself to actively sample subsets that are equally or even more effective.
The key to our data sampling technique lies in the enhancement of diversity in the chosen subsets.
Extensive experiments across three datasets and benchmarks demonstrate the effectiveness of DiverseEvol.
arXiv Detail & Related papers (2023-11-14T14:10:40Z) - Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models [69.76066070227452]
*Data Synthesis* is a promising way to train a small model with very little labeled data.
We propose *Synthesis Step by Step* (**S3**), a data synthesis framework that shrinks this distribution gap.
Our approach improves the performance of a small model by reducing the gap between the synthetic dataset and the real data.
arXiv Detail & Related papers (2023-10-20T17:14:25Z) - Farzi Data: Autoregressive Data Distillation [34.39112473620335]
We study data distillation for auto-regressive machine learning tasks.
We propose Farzi, which summarizes an event sequence dataset into a small number of synthetic sequences.
arXiv Detail & Related papers (2023-10-15T23:23:27Z) - Quality Not Quantity: On the Interaction between Dataset Design and
Robustness of CLIP [43.7219097444333]
We introduce a testbed of six publicly available data sources to investigate how pre-training distributions induce robustness in CLIP.
We find that the performance of the pre-training data varies substantially across distribution shifts.
We find that combining multiple sources does not necessarily yield better models, but rather dilutes the robustness of the best individual data source.
arXiv Detail & Related papers (2022-08-10T18:24:23Z) - Improving Zero and Few-Shot Abstractive Summarization with Intermediate
Fine-tuning and Data Augmentation [101.26235068460551]
Models pretrained with self-supervised objectives on large text corpora achieve state-of-the-art performance on English text summarization tasks.
Models are typically fine-tuned on hundreds of thousands of data points, an infeasible requirement when applying summarization to new, niche domains.
We introduce a novel and generalizable method, called WikiTransfer, for fine-tuning pretrained models for summarization in an unsupervised, dataset-specific manner.
arXiv Detail & Related papers (2020-10-24T08:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.