3D Imaging of Complex Specular Surfaces by Fusing Polarimetric and Deflectometric Information
- URL: http://arxiv.org/abs/2406.01994v1
- Date: Tue, 4 Jun 2024 06:24:07 GMT
- Title: 3D Imaging of Complex Specular Surfaces by Fusing Polarimetric and Deflectometric Information
- Authors: Jiazhang Wang, Oliver Cossairt, Florian Willomitzer,
- Abstract summary: We introduce a measurement principle that utilizes a novel technique to encode and decode the information contained in a light field reflected off a specular surface.
Our approach removes the unrealistic orthographic imaging assumption for SfP, which significantly improves the respective results.
We showcase our new technique by demonstrating single-shot and multi-shot measurements on complex-shaped specular surfaces.
- Score: 5.729076985389067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and fast 3D imaging of specular surfaces still poses major challenges for state-of-the-art optical measurement principles. Frequently used methods, such as phase-measuring deflectometry (PMD) or shape-from-polarization (SfP), rely on strong assumptions about the measured objects, limiting their generalizability in broader application areas like medical imaging, industrial inspection, virtual reality, or cultural heritage analysis. In this paper, we introduce a measurement principle that utilizes a novel technique to effectively encode and decode the information contained in a light field reflected off a specular surface. We combine polarization cues from SfP with geometric information obtained from PMD to resolve all arising ambiguities in the 3D measurement. Moreover, our approach removes the unrealistic orthographic imaging assumption for SfP, which significantly improves the respective results. We showcase our new technique by demonstrating single-shot and multi-shot measurements on complex-shaped specular surfaces, displaying an evaluated accuracy of surface normals below $0.6^\circ$.
Related papers
- NeRSP: Neural 3D Reconstruction for Reflective Objects with Sparse Polarized Images [62.752710734332894]
NeRSP is a Neural 3D reconstruction technique for Reflective surfaces with Sparse Polarized images.
We derive photometric and geometric cues from the polarimetric image formation model and multiview azimuth consistency.
We achieve the state-of-the-art surface reconstruction results with only 6 views as input.
arXiv Detail & Related papers (2024-06-11T09:53:18Z) - RMAFF-PSN: A Residual Multi-Scale Attention Feature Fusion Photometric Stereo Network [37.759675702107586]
Predicting accurate maps of objects from two-dimensional images in regions of complex structure spatial material variations is challenging.
We propose a method of calibrated feature information from different resolution stages and scales of the image.
This approach preserves more physical information, such as texture and geometry of the object in complex regions.
arXiv Detail & Related papers (2024-04-11T14:05:37Z) - Polarimetric Multi-View Inverse Rendering [13.391866136230165]
A polarization camera has great potential for 3D reconstruction since the angle of polarization (AoP) and the degree of polarization (DoP) of reflected light are related to an object's surface normal.
We propose a novel 3D reconstruction method called Polarimetric Multi-View Inverse Rendering (Polarimetric MVIR) that effectively exploits geometric, photometric, and polarimetric cues extracted from input multi-view color-polarization images.
arXiv Detail & Related papers (2022-12-24T12:12:12Z) - Deep Learning Methods for Calibrated Photometric Stereo and Beyond [86.57469194387264]
Photometric stereo recovers the surface normals of an object from multiple images with varying shading cues.
Deep learning methods have shown a powerful ability in the context of photometric stereo against non-Lambertian surfaces.
arXiv Detail & Related papers (2022-12-16T11:27:44Z) - Uncertainty-Aware Deep Multi-View Photometric Stereo [100.97116470055273]
Photometric stereo (PS) is excellent at recovering high-frequency surface details, whereas multi-view stereo (MVS) can help remove the low-frequency distortion due to PS and retain the global shape.
This paper proposes an approach that can effectively utilize such complementary strengths of PS and MVS.
We estimate per-pixel surface normals and depth using an uncertainty-aware deep-PS network and deep-MVS network, respectively.
arXiv Detail & Related papers (2022-02-26T05:45:52Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - SIDER: Single-Image Neural Optimization for Facial Geometric Detail
Recovery [54.64663713249079]
SIDER is a novel photometric optimization method that recovers detailed facial geometry from a single image in an unsupervised manner.
In contrast to prior work, SIDER does not rely on any dataset priors and does not require additional supervision from multiple views, lighting changes or ground truth 3D shape.
arXiv Detail & Related papers (2021-08-11T22:34:53Z) - LUCES: A Dataset for Near-Field Point Light Source Photometric Stereo [30.31403197697561]
We introduce LUCES, the first real-world 'dataset for near-fieLd point light soUrCe photomEtric Stereo' of 14 objects of a varying of materials.
A device counting 52 LEDs has been designed to lit each object positioned 10 to 30 centimeters away from the camera.
We evaluate the performance of the latest near-field Photometric Stereo algorithms on the proposed dataset.
arXiv Detail & Related papers (2021-04-27T12:30:42Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
We introduce an efficient fully-convolutional architecture that can leverage both spatial and photometric context simultaneously.
Using separable 4D convolutions and 2D heat-maps reduces the size and makes more efficient.
arXiv Detail & Related papers (2021-03-22T18:06:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.