Verifying the Generalization of Deep Learning to Out-of-Distribution Domains
- URL: http://arxiv.org/abs/2406.02024v3
- Date: Sun, 30 Jun 2024 07:44:53 GMT
- Title: Verifying the Generalization of Deep Learning to Out-of-Distribution Domains
- Authors: Guy Amir, Osher Maayan, Tom Zelazny, Guy Katz, Michael Schapira,
- Abstract summary: Deep neural networks (DNNs) play a crucial role in the field of machine learning.
DNNs may occasionally exhibit challenges with generalization, i.e., may fail to handle inputs that were not encountered during training.
This limitation is a significant challenge when it comes to deploying deep learning for safety-critical tasks.
- Score: 1.5774380628229037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) play a crucial role in the field of machine learning, demonstrating state-of-the-art performance across various application domains. However, despite their success, DNN-based models may occasionally exhibit challenges with generalization, i.e., may fail to handle inputs that were not encountered during training. This limitation is a significant challenge when it comes to deploying deep learning for safety-critical tasks, as well as in real-world settings characterized by substantial variability. We introduce a novel approach for harnessing DNN verification technology to identify DNN-driven decision rules that exhibit robust generalization to previously unencountered input domains. Our method assesses generalization within an input domain by measuring the level of agreement between independently trained deep neural networks for inputs in this domain. We also efficiently realize our approach by using off-the-shelf DNN verification engines, and extensively evaluate it on both supervised and unsupervised DNN benchmarks, including a deep reinforcement learning (DRL) system for Internet congestion control -- demonstrating the applicability of our approach for real-world settings. Moreover, our research introduces a fresh objective for formal verification, offering the prospect of mitigating the challenges linked to deploying DNN-driven systems in real-world scenarios.
Related papers
- A Survey of Graph Neural Networks in Real world: Imbalance, Noise,
Privacy and OOD Challenges [75.37448213291668]
This paper systematically reviews existing Graph Neural Networks (GNNs)
We first highlight the four key challenges faced by existing GNNs, paving the way for our exploration of real-world GNN models.
arXiv Detail & Related papers (2024-03-07T13:10:37Z) - Verifying Generalization in Deep Learning [3.4948705785954917]
Deep neural networks (DNNs) are the workhorses of deep learning.
DNNs are notoriously prone to poor generalization, i.e., may prove inadequate on inputs not encountered during training.
We propose a novel, verification-driven methodology for identifying DNN-based decision rules that generalize well to new input domains.
arXiv Detail & Related papers (2023-02-11T17:08:15Z) - Enhancing Deep Learning with Scenario-Based Override Rules: a Case Study [0.0]
Deep neural networks (DNNs) have become a crucial instrument in the software development toolkit.
DNNs are highly opaque, and can behave in an unexpected manner when they encounter unfamiliar input.
One promising approach is by extending DNN-based systems with hand-crafted override rules.
arXiv Detail & Related papers (2023-01-19T15:06:32Z) - gRoMA: a Tool for Measuring the Global Robustness of Deep Neural
Networks [3.2228025627337864]
Deep neural networks (DNNs) are at the forefront of cutting-edge technology, and have been achieving remarkable performance in a variety of complex tasks.
Their integration into safety-critical systems, such as in the aerospace or automotive domains, poses a significant challenge due to the threat of adversarial inputs.
Here, we present gRoMA, an innovative and scalable tool that implements a probabilistic approach to measure the global categorial robustness of a DNN.
arXiv Detail & Related papers (2023-01-05T20:45:23Z) - Taming Reachability Analysis of DNN-Controlled Systems via
Abstraction-Based Training [14.787056022080625]
This paper presents a novel abstraction-based approach to bypass the crux of over-approximating DNNs in reachability analysis.
We extend conventional DNNs by inserting an additional abstraction layer, which abstracts a real number to an interval for training.
We devise the first black-box reachability analysis approach for DNN-controlled systems, where trained DNNs are only queried as black-box oracles for the actions on abstract states.
arXiv Detail & Related papers (2022-11-21T00:11:50Z) - Trustworthy Graph Neural Networks: Aspects, Methods and Trends [115.84291569988748]
Graph neural networks (GNNs) have emerged as competent graph learning methods for diverse real-world scenarios.
Performance-oriented GNNs have exhibited potential adverse effects like vulnerability to adversarial attacks.
To avoid these unintentional harms, it is necessary to build competent GNNs characterised by trustworthiness.
arXiv Detail & Related papers (2022-05-16T02:21:09Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Neuron Coverage-Guided Domain Generalization [37.77033512313927]
This paper focuses on the domain generalization task where domain knowledge is unavailable, and even worse, only samples from a single domain can be utilized during training.
Our motivation originates from the recent progresses in deep neural network (DNN) testing, which has shown that maximizing neuron coverage of DNN can help to explore possible defects of DNN.
arXiv Detail & Related papers (2021-02-27T14:26:53Z) - A Survey on Assessing the Generalization Envelope of Deep Neural
Networks: Predictive Uncertainty, Out-of-distribution and Adversarial Samples [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art performance on numerous applications.
It is difficult to tell beforehand if a DNN receiving an input will deliver the correct output since their decision criteria are usually nontransparent.
This survey connects the three fields within the larger framework of investigating the generalization performance of machine learning methods and in particular DNNs.
arXiv Detail & Related papers (2020-08-21T09:12:52Z) - Learning from Extrinsic and Intrinsic Supervisions for Domain
Generalization [95.73898853032865]
We present a new domain generalization framework that learns how to generalize across domains simultaneously.
We demonstrate the effectiveness of our approach on two standard object recognition benchmarks.
arXiv Detail & Related papers (2020-07-18T03:12:24Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
Deep neural networks (DNNs) are vulnerable to adversarial examples and other data perturbations.
GraN is a time- and parameter-efficient method that is easily adaptable to any DNN.
GraN achieves state-of-the-art performance on numerous problem set-ups.
arXiv Detail & Related papers (2020-04-20T10:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.