Taming Reachability Analysis of DNN-Controlled Systems via
Abstraction-Based Training
- URL: http://arxiv.org/abs/2211.11127v2
- Date: Tue, 31 Oct 2023 13:30:01 GMT
- Title: Taming Reachability Analysis of DNN-Controlled Systems via
Abstraction-Based Training
- Authors: Jiaxu Tian and Dapeng Zhi and Si Liu and Peixin Wang and Guy Katz and
Min Zhang
- Abstract summary: This paper presents a novel abstraction-based approach to bypass the crux of over-approximating DNNs in reachability analysis.
We extend conventional DNNs by inserting an additional abstraction layer, which abstracts a real number to an interval for training.
We devise the first black-box reachability analysis approach for DNN-controlled systems, where trained DNNs are only queried as black-box oracles for the actions on abstract states.
- Score: 14.787056022080625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The intrinsic complexity of deep neural networks (DNNs) makes it challenging
to verify not only the networks themselves but also the hosting DNN-controlled
systems. Reachability analysis of these systems faces the same challenge.
Existing approaches rely on over-approximating DNNs using simpler polynomial
models. However, they suffer from low efficiency and large overestimation, and
are restricted to specific types of DNNs. This paper presents a novel
abstraction-based approach to bypass the crux of over-approximating DNNs in
reachability analysis. Specifically, we extend conventional DNNs by inserting
an additional abstraction layer, which abstracts a real number to an interval
for training. The inserted abstraction layer ensures that the values
represented by an interval are indistinguishable to the network for both
training and decision-making. Leveraging this, we devise the first black-box
reachability analysis approach for DNN-controlled systems, where trained DNNs
are only queried as black-box oracles for the actions on abstract states. Our
approach is sound, tight, efficient, and agnostic to any DNN type and size. The
experimental results on a wide range of benchmarks show that the DNNs trained
by using our approach exhibit comparable performance, while the reachability
analysis of the corresponding systems becomes more amenable with significant
tightness and efficiency improvement over the state-of-the-art white-box
approaches.
Related papers
- Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
We present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach.
We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully-connected feed networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets)
Preliminary results show that VeriStable is competitive and outperforms state-of-the-art verification tools, including $alpha$-$beta$-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively.
arXiv Detail & Related papers (2024-01-19T23:48:04Z) - Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty
from Pre-trained Models [40.38541033389344]
Deep Neural Networks (DNNs) are powerful tools for various computer vision tasks, yet they often struggle with reliable uncertainty quantification.
We introduce the Adaptable Bayesian Neural Network (ABNN), a simple and scalable strategy to seamlessly transform DNNs into BNNs.
We conduct extensive experiments across multiple datasets for image classification and semantic segmentation tasks, and our results demonstrate that ABNN achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-12-23T16:39:24Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
Quantized neural networks (QNNs) have been developed, with binarized neural networks (BNNs) restricted to binary values as a special case.
This paper presents an automata-theoretic approach to synthesizing BNNs that meet designated properties.
arXiv Detail & Related papers (2023-07-29T06:27:28Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Pruning and Slicing Neural Networks using Formal Verification [0.2538209532048866]
Deep neural networks (DNNs) play an increasingly important role in various computer systems.
In order to create these networks, engineers typically specify a desired topology, and then use an automated training algorithm to select the network's weights.
Here, we propose to address this challenge by harnessing recent advances in DNN verification.
arXiv Detail & Related papers (2021-05-28T07:53:50Z) - Abstraction and Symbolic Execution of Deep Neural Networks with Bayesian
Approximation of Hidden Features [8.723426955657345]
We propose a novel abstraction method which abstracts a deep neural network and a dataset into a Bayesian network.
We make use of dimensionality reduction techniques to identify hidden features that have been learned by hidden layers of the DNN.
We can derive a runtime monitoring approach to detect in operational time rare inputs.
arXiv Detail & Related papers (2021-03-05T14:28:42Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.