論文の概要: Assessing the Performance of Chinese Open Source Large Language Models in Information Extraction Tasks
- arxiv url: http://arxiv.org/abs/2406.02079v1
- Date: Tue, 4 Jun 2024 08:00:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 17:21:12.755876
- Title: Assessing the Performance of Chinese Open Source Large Language Models in Information Extraction Tasks
- Title(参考訳): 情報抽出作業における中国語オープンソース大言語モデルの性能評価
- Authors: Yida Cai, Hao Sun, Hsiu-Yuan Huang, Yunfang Wu,
- Abstract要約: 自然言語処理(NLP)における情報抽出(IE)の役割
英語IEタスクに焦点をあてた最近の実験は、LLM(Large Language Models)が最適性能を達成する上で直面する課題に光を当てている。
- 参考スコア(独自算出の注目度): 12.400599440431188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information Extraction (IE) plays a crucial role in Natural Language Processing (NLP) by extracting structured information from unstructured text, thereby facilitating seamless integration with various real-world applications that rely on structured data. Despite its significance, recent experiments focusing on English IE tasks have shed light on the challenges faced by Large Language Models (LLMs) in achieving optimal performance, particularly in sub-tasks like Named Entity Recognition (NER). In this paper, we delve into a comprehensive investigation of the performance of mainstream Chinese open-source LLMs in tackling IE tasks, specifically under zero-shot conditions where the models are not fine-tuned for specific tasks. Additionally, we present the outcomes of several few-shot experiments to further gauge the capability of these models. Moreover, our study includes a comparative analysis between these open-source LLMs and ChatGPT, a widely recognized language model, on IE performance. Through meticulous experimentation and analysis, we aim to provide insights into the strengths, limitations, and potential enhancements of existing Chinese open-source LLMs in the domain of Information Extraction within the context of NLP.
- Abstract(参考訳): 情報抽出(IE)は、構造化されていないテキストから構造化された情報を抽出し、構造化されたデータに依存する様々な現実世界のアプリケーションとのシームレスな統合を容易にすることで、自然言語処理(NLP)において重要な役割を担っている。
英語IEタスクに焦点を当てた最近の実験は、特に名前付きエンティティ認識(NER)のようなサブタスクにおいて、最適なパフォーマンスを達成する上で、LLM(Large Language Models)が直面する課題に光を当てている。
本稿では,IEタスク,特に特定のタスクに対してモデルが微調整されていないゼロショット条件下で,主要な中国のオープンソースLLMの性能について,包括的な調査を行う。
さらに、これらのモデルの有効性を更に評価するために、いくつかのショット実験の結果を提示する。
さらに,これらのオープンソースLLMと,広く認識されている言語モデルであるChatGPTのIE性能の比較分析を行った。
我々は,厳密な実験と分析を通じて,NLPの文脈における情報抽出領域における既存の中国のオープンソースLLMの強み,限界,潜在的な拡張に関する洞察を提供することを目的とする。
関連論文リスト
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization [25.052557735932535]
大規模言語モデル(LLM)は、自然言語処理における多様なタスクに革命をもたらす可能性を実証している。
本稿ではアスペクトベース要約タスクにおける微調整LDMの可能性について検討する。
我々は,Llama2,Mistral,Gemma,Ayaなどオープンソースファウンデーションの微調整が,パブリックドメイン固有のアスペクトベース要約データセットに与える影響を評価する。
論文 参考訳(メタデータ) (2024-08-05T16:00:21Z) - Automating Customer Needs Analysis: A Comparative Study of Large Language Models in the Travel Industry [2.4244694855867275]
大規模言語モデル(LLM)は、大量のテキストデータから貴重な洞察を抽出するための強力なツールとして登場した。
本研究では,TripAdvisor 投稿から旅行客のニーズを抽出するための LLM の比較分析を行った。
特にMistral 7Bは,大規模クローズドモデルに匹敵する性能を示した。
論文 参考訳(メタデータ) (2024-04-27T18:28:10Z) - LLM-DA: Data Augmentation via Large Language Models for Few-Shot Named
Entity Recognition [67.96794382040547]
$LLM-DA$は、数発のNERタスクのために、大きな言語モデル(LLM)に基づいた、新しいデータ拡張テクニックである。
提案手法では,14のコンテキスト書き換え戦略を採用し,同一タイプのエンティティ置換を設計し,ロバスト性を高めるためにノイズ注入を導入する。
論文 参考訳(メタデータ) (2024-02-22T14:19:56Z) - Quantitative knowledge retrieval from large language models [4.155711233354597]
大規模言語モデル(LLM)は、説得力のある自然言語配列を生成する能力について広く研究されている。
本稿では,データ解析作業を支援するための定量的知識検索のメカニズムとして,LLMの実現可能性について検討する。
論文 参考訳(メタデータ) (2024-02-12T16:32:37Z) - Lost in the Source Language: How Large Language Models Evaluate the Quality of Machine Translation [64.5862977630713]
本研究では,機械翻訳評価タスクにおいて,Large Language Models (LLM) がソースデータと参照データをどのように活用するかを検討する。
参照情報が評価精度を大幅に向上させるのに対して,意外なことに,ソース情報は時として非生産的である。
論文 参考訳(メタデータ) (2024-01-12T13:23:21Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて印象的な機能を示している。
情報検索(IR)タスクへのそれらの適用は、自然言語における多くのIR固有の概念の頻繁な発生のため、いまだに困難である。
我々は,3つの基本IRカテゴリにまたがる20のタスクを含む新しいインストラクションチューニングデータセット InterS を導入する。
論文 参考訳(メタデータ) (2024-01-12T12:10:28Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Are Large Language Models Good Fact Checkers: A Preliminary Study [26.023148371263012]
大規模言語モデル(LLM)は、その卓越した推論能力と広範な知識リポジトリによって、大きな注目を集めている。
本研究の目的は,特定のファクトチェックサブタスクに対処する上で,様々なLSMを包括的に評価することである。
論文 参考訳(メタデータ) (2023-11-29T05:04:52Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。