論文の概要: Open or Closed LLM for Lesser-Resourced Languages? Lessons from Greek
- arxiv url: http://arxiv.org/abs/2501.12826v1
- Date: Wed, 22 Jan 2025 12:06:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:53:56.055840
- Title: Open or Closed LLM for Lesser-Resourced Languages? Lessons from Greek
- Title(参考訳): 低リソース言語のためのオープンまたはクローズドLLM : ギリシャ語からの教訓
- Authors: John Pavlopoulos, Juli Bakagianni, Kanella Pouli, Maria Gavriilidou,
- Abstract要約: 我々は,7つのNLPタスクにおけるオープンソース(Llama-70b)とクローズドソース(GPT-4o mini)の大規模言語モデルの性能評価を行った。
第2に,事前学習における LLM による潜在的なデータ使用量を評価するツールとして,オーソリティ属性を再定義することにより,ギリシャ NLP の範囲を広げる。
第3に,STE(Summarize, Translate, Embed)法は,従来のTF-IDF法よりも長文のクラスタリングに優れる,法的NLPのケーススタディを示す。
- 参考スコア(独自算出の注目度): 2.3499129784547663
- License:
- Abstract: Natural Language Processing (NLP) for lesser-resourced languages faces persistent challenges, including limited datasets, inherited biases from high-resource languages, and the need for domain-specific solutions. This study addresses these gaps for Modern Greek through three key contributions. First, we evaluate the performance of open-source (Llama-70b) and closed-source (GPT-4o mini) large language models (LLMs) on seven core NLP tasks with dataset availability, revealing task-specific strengths, weaknesses, and parity in their performance. Second, we expand the scope of Greek NLP by reframing Authorship Attribution as a tool to assess potential data usage by LLMs in pre-training, with high 0-shot accuracy suggesting ethical implications for data provenance. Third, we showcase a legal NLP case study, where a Summarize, Translate, and Embed (STE) methodology outperforms the traditional TF-IDF approach for clustering \emph{long} legal texts. Together, these contributions provide a roadmap to advance NLP in lesser-resourced languages, bridging gaps in model evaluation, task innovation, and real-world impact.
- Abstract(参考訳): 低リソース言語のための自然言語処理(NLP)は、限られたデータセット、高リソース言語から受け継いだバイアス、ドメイン固有のソリューションの必要性など、永続的な課題に直面している。
本研究は,現代ギリシア語におけるこれらのギャップを3つの重要な貢献を通じて解決する。
まず,オープンソース(Llama-70b)およびクローズドソース(GPT-4o mini)大規模言語モデル(LLM)の性能評価を行った。
第2に、事前学習におけるLSMによる潜在的なデータ使用量を評価するツールとして、オーソリティ・アトリビューション(Authorship Attribution)を再定義することにより、ギリシャのNLPの範囲を広げる。
第3に,STE(Summarize, Translate, Embed)法は,従来の TF-IDF 法よりも優れていることを示す。
これらのコントリビューションは、低リソースの言語でNLPを前進させるロードマップ、モデル評価におけるブリッジングギャップ、タスクイノベーション、実世界のインパクトを提供する。
関連論文リスト
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。
現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。
近年の研究では、LCSタスクにおけるLCMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (2024-10-26T00:39:44Z) - Leveraging Open-Source Large Language Models for Native Language Identification [1.6267479602370543]
ネイティブ言語識別(NLI)は、法医学、マーケティング、第二言語習得に応用されている。
本研究では,オープンソース生成型大規模言語モデル(LLM)をNLIに適用する可能性について検討する。
論文 参考訳(メタデータ) (2024-09-15T08:14:18Z) - Bridging the Bosphorus: Advancing Turkish Large Language Models through Strategies for Low-Resource Language Adaptation and Benchmarking [1.3716808114696444]
大規模言語モデル(LLM)は様々な分野において重要になってきており、表現不足の言語における高品質なモデルの緊急性を強調している。
本研究では、データ不足、モデル選択、評価、計算制限など、低リソース言語が直面する固有の課題について検討する。
論文 参考訳(メタデータ) (2024-05-07T21:58:45Z) - Data-Augmentation-Based Dialectal Adaptation for LLMs [26.72394783468532]
本稿では, GMUNLPによるVarDial 2024におけるDialect-Copa共有タスクへの参加について述べる。
この課題は、南スラヴ語のマイクロディレクト上での大規模言語モデル(LLM)の常識推論能力を評価することに焦点を当てている。
本稿では,異なるタイプの言語モデルの強みを組み合わせ,データ拡張技術を活用してタスク性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-04-11T19:15:32Z) - TriSum: Learning Summarization Ability from Large Language Models with Structured Rationale [66.01943465390548]
本稿では,大規模言語モデルのテキスト要約能力を,コンパクトで局所的なモデルに抽出するフレームワークであるTriSumを紹介する。
本手法は,様々なベンチマーク上での局所モデル性能を向上させる。
また、要約の合理性に関する洞察を提供することで、解釈可能性も向上する。
論文 参考訳(メタデータ) (2024-03-15T14:36:38Z) - High-quality Data-to-Text Generation for Severely Under-Resourced
Languages with Out-of-the-box Large Language Models [5.632410663467911]
我々は、事前訓練された大規模言語モデル(LLM)が、アンダーリソース言語のパフォーマンスギャップを埋める可能性について検討する。
LLM は,低リソース言語における技術の現状を,かなりのマージンで容易に設定できることがわかった。
全ての言語について、人間の評価は最高のシステムで人間と同等のパフォーマンスを示すが、BLEUのスコアは英語に比べて崩壊する。
論文 参考訳(メタデータ) (2024-02-19T16:29:40Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットにおけるNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - GlotLID: Language Identification for Low-Resource Languages [51.38634652914054]
GlotLID-M は広い範囲、信頼性、効率性のデシラタを満たす LID モデルである。
1665の言語を識別し、以前の作業に比べてカバー範囲が大幅に増加した。
論文 参考訳(メタデータ) (2023-10-24T23:45:57Z) - CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation [94.59630161324013]
本稿では,非構造化テキストの大規模共同アノテーションのための新しいパラダイムであるCoAnnotatingを提案する。
我々の実証研究は、CoAnnotatingが、異なるデータセット上の結果から作業を割り当てる効果的な手段であることを示し、ランダムベースラインよりも最大21%のパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-10-24T08:56:49Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。