MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset
- URL: http://arxiv.org/abs/2406.02106v1
- Date: Tue, 4 Jun 2024 08:35:04 GMT
- Title: MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset
- Authors: Weiqi Wang, Yangqiu Song,
- Abstract summary: Large Language Models (LLMs) function as conscious agents with generalizable reasoning capabilities.
This ability remains underexplored due to the complexity of modeling infinite possible changes in an event.
We introduce the first-ever benchmark, MARS, comprising three tasks corresponding to each step.
- Score: 50.36095192314595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To enable Large Language Models (LLMs) to function as conscious agents with generalizable reasoning capabilities, it is crucial that they possess the reasoning ability to comprehend situational changes (transitions) in distribution triggered by environmental factors or actions from other agents. Despite its fundamental significance, this ability remains underexplored due to the complexity of modeling infinite possible changes in an event and their associated distributions, coupled with the lack of benchmark data with situational transitions. Addressing these gaps, we propose a novel formulation of reasoning with distributional changes as a three-step discriminative process, termed as MetAphysical ReaSoning. We then introduce the first-ever benchmark, MARS, comprising three tasks corresponding to each step. These tasks systematically assess LLMs' capabilities in reasoning the plausibility of (i) changes in actions, (ii) states caused by changed actions, and (iii) situational transitions driven by changes in action. Extensive evaluations with 20 (L)LMs of varying sizes and methods indicate that all three tasks in this process pose significant challenges, even for state-of-the-art LLMs and LMs after fine-tuning. Further analyses reveal potential causes for the underperformance of LLMs and demonstrate that pre-training them on large-scale conceptualization taxonomies can potentially enhance their metaphysical reasoning capabilities. Our data and models are publicly accessible at https://github.com/HKUST-KnowComp/MARS.
Related papers
- Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
We aim to evaluate Large Language Models (LLMs) for embodied decision making.
Existing evaluations tend to rely solely on a final success rate.
We propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks.
arXiv Detail & Related papers (2024-10-09T17:59:00Z) - Deliberate Reasoning for LLMs as Structure-aware Planning with Accurate World Model [14.480267340831542]
We propose Structure-aware Planning with Accurate World Model (SWAP) for large language models (LLMs)
SWAP incorporates structural information to guide the reasoning process via a world model and provides a soft verification mechanism over the steps.
We evaluate SWAP across diverse reasoning-intensive benchmarks including math reasoning, logical reasoning, and coding tasks.
arXiv Detail & Related papers (2024-10-04T04:23:36Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - Typography Leads Semantic Diversifying: Amplifying Adversarial Transferability across Multimodal Large Language Models [27.955342181784797]
There is currently no systematic research on the threat of cross-MLLMs adversarial transferability.
We propose a boosting method called Typography Augment Transferability Method (TATM) to investigate the adversarial transferability performance across MLLMs.
arXiv Detail & Related papers (2024-05-30T14:27:20Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
This survey underscores the imperative for increased explainability in Large Language Models (LLMs)
Our focus is primarily on pre-trained Transformer-based LLMs, which pose distinctive interpretability challenges due to their scale and complexity.
When considering the utilization of explainability, we explore several compelling methods that concentrate on model editing, control generation, and model enhancement.
arXiv Detail & Related papers (2024-01-23T16:09:53Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - ReAct: Synergizing Reasoning and Acting in Language Models [44.746116256516046]
We show that large language models (LLMs) can generate both reasoning traces and task-specific actions in an interleaved manner.
We apply our approach, named ReAct, to a diverse set of language and decision making tasks.
ReAct overcomes issues of hallucination and error propagation prevalent in chain-of-thought reasoning by interacting with a simple Wikipedia API.
arXiv Detail & Related papers (2022-10-06T01:00:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.