Optimality of Matrix Mechanism on $\ell_p^p$-metric
- URL: http://arxiv.org/abs/2406.02140v1
- Date: Tue, 4 Jun 2024 09:27:35 GMT
- Title: Optimality of Matrix Mechanism on $\ell_p^p$-metric
- Authors: Jingcheng Liu, Jalaj Upadhyay, Zongrui Zou,
- Abstract summary: We characterize such an error under $(epsilon,delta)$-differential privacy.
We give tight bounds on answering prefix sum and parity queries under differential privacy for all constant $p$ in terms of the $ell_pp$ error.
- Score: 6.076406622352115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce the $\ell_p^p$-error metric (for $p \geq 2$) when answering linear queries under the constraint of differential privacy. We characterize such an error under $(\epsilon,\delta)$-differential privacy. Before this paper, tight characterization in the hardness of privately answering linear queries was known under $\ell_2^2$-error metric (Edmonds et al., STOC 2020) and $\ell_p^2$-error metric for unbiased mechanisms (Nikolov and Tang, ITCS 2024). As a direct consequence of our results, we give tight bounds on answering prefix sum and parity queries under differential privacy for all constant $p$ in terms of the $\ell_p^p$ error, generalizing the bounds in Henzinger et al. (SODA 2023) for $p=2$.
Related papers
- Approximate Differential Privacy of the $\ell_2$ Mechanism [52.61055173572399]
We study the $ell$ mechanism for computing a $d$-dimensional statistic with bounded $ell$ sensitivity under approximate differential privacy.
Across a range of privacy parameters, we find that the $ell$ mechanism obtains lower error than the Laplace and Gaussian mechanisms.
arXiv Detail & Related papers (2025-02-21T20:56:34Z) - PREM: Privately Answering Statistical Queries with Relative Error [91.98332694700046]
We introduce $mathsfPREM$ (Private Relative Error Multiplicative weight update), a new framework for generating synthetic data that a relative error guarantee for statistical queries under $(varepsilon, delta)$ differential privacy (DP)
We complement our algorithm with nearly matching lower bounds.
arXiv Detail & Related papers (2025-02-20T18:32:02Z) - Optimal Query Complexities for Dynamic Trace Estimation [59.032228008383484]
We consider the problem of minimizing the number of matrix-vector queries needed for accurate trace estimation in the dynamic setting where our underlying matrix is changing slowly.
We provide a novel binary tree summation procedure that simultaneously estimates all $m$ traces up to $epsilon$ error with $delta$ failure probability.
Our lower bounds (1) give the first tight bounds for Hutchinson's estimator in the matrix-vector product model with Frobenius norm error even in the static setting, and (2) are the first unconditional lower bounds for dynamic trace estimation.
arXiv Detail & Related papers (2022-09-30T04:15:44Z) - Private Convex Optimization via Exponential Mechanism [16.867534746193833]
We show that modifying the exponential mechanism by adding an $ellcave2$ regularizer to $F(x)$ recovers both the known optimal empirical risk and population loss under $(epsilon,delta)$-DP.
We also show how to implement this mechanism using $widetildeO(n min(d, n)) queries to $f_i(x) for the DP-SCO where $n$ is the number of samples/optimal and $d is the ambient dimension.
arXiv Detail & Related papers (2022-03-01T06:51:03Z) - Differentially Private $\ell_1$-norm Linear Regression with Heavy-tailed
Data [22.233705161499273]
We focus on the $ell_1$-norm linear regression in the $epsilon$-DP model.
We show that it is possible to achieve an upper bound of $tildeO(sqrtfracdnepsilon)$ with high probability.
Our algorithms can also be extended to more relaxed cases where only each coordinate of the data has bounded moments.
arXiv Detail & Related papers (2022-01-10T08:17:05Z) - Active Sampling for Linear Regression Beyond the $\ell_2$ Norm [70.49273459706546]
We study active sampling algorithms for linear regression, which aim to query only a small number of entries of a target vector.
We show that this dependence on $d$ is optimal, up to logarithmic factors.
We also provide the first total sensitivity upper bound $O(dmax1,p/2log2 n)$ for loss functions with at most degree $p$ growth.
arXiv Detail & Related papers (2021-11-09T00:20:01Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - On Avoiding the Union Bound When Answering Multiple Differentially
Private Queries [49.453751858361265]
We give an algorithm for this task that achieves an expected $ell_infty$ error bound of $O(frac1epsilonsqrtk log frac1delta)$.
On the other hand, the algorithm of Dagan and Kur has a remarkable advantage that the $ell_infty$ error bound of $O(frac1epsilonsqrtk log frac1delta)$ holds not only in expectation but always.
arXiv Detail & Related papers (2020-12-16T17:58:45Z) - A bounded-noise mechanism for differential privacy [3.9596068699962323]
We output an approximation of the average $frac1nsum_i=1n vecx(i)$ of vectors $vecx(i) in [0,1]k$, while preserving the privacy with respect to any $vecx(i)$.
We present an $(epsilon,delta)$-private mechanism with optimal $ell_infty$ error for most values of $delta$.
arXiv Detail & Related papers (2020-12-07T16:03:21Z) - On Distributed Differential Privacy and Counting Distinct Elements [52.701425652208734]
We study the setup where each of $n$ users holds an element from a discrete set.
The goal is to count the number of distinct elements across all users.
arXiv Detail & Related papers (2020-09-21T04:13:34Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.