Pairwise Ranking Loss for Multi-Task Learning in Recommender Systems
- URL: http://arxiv.org/abs/2406.02163v2
- Date: Wed, 05 Jun 2024 05:17:08 GMT
- Title: Pairwise Ranking Loss for Multi-Task Learning in Recommender Systems
- Authors: Furkan Durmus, Hasan Saribas, Said Aldemir, Junyan Yang, Hakan Cevikalp,
- Abstract summary: In online advertising systems, tasks like Click-Through Rate (CTR) and Conversion Rate (CVR) are often treated as MTL problems concurrently.
In this study, exposure labels corresponding to conversions are regarded as definitive indicators.
A novel task-specific loss is introduced by calculating a textbfpairtextbfwise textbfranking (PWiseR) loss between model predictions.
- Score: 8.824514065551865
- License:
- Abstract: Multi-Task Learning (MTL) plays a crucial role in real-world advertising applications such as recommender systems, aiming to achieve robust representations while minimizing resource consumption. MTL endeavors to simultaneously optimize multiple tasks to construct a unified model serving diverse objectives. In online advertising systems, tasks like Click-Through Rate (CTR) and Conversion Rate (CVR) are often treated as MTL problems concurrently. However, it has been overlooked that a conversion ($y_{cvr}=1$) necessitates a preceding click ($y_{ctr}=1$). In other words, while certain CTR tasks are associated with corresponding conversions, others lack such associations. Moreover, the likelihood of noise is significantly higher in CTR tasks where conversions do not occur compared to those where they do, and existing methods lack the ability to differentiate between these two scenarios. In this study, exposure labels corresponding to conversions are regarded as definitive indicators, and a novel task-specific loss is introduced by calculating a \textbf{p}air\textbf{wise} \textbf{r}anking (PWiseR) loss between model predictions, manifesting as pairwise ranking loss, to encourage the model to rely more on them. To demonstrate the effect of the proposed loss function, experiments were conducted on different MTL and Single-Task Learning (STL) models using four distinct public MTL datasets, namely Alibaba FR, NL, US, and CCP, along with a proprietary industrial dataset. The results indicate that our proposed loss function outperforms the BCE loss function in most cases in terms of the AUC metric.
Related papers
- MTLComb: multi-task learning combining regression and classification tasks for joint feature selection [3.708475728683911]
Multi-task learning (MTL) is a learning paradigm that enables the simultaneous training of multiple communicating algorithms.
We propose a provable loss weighting scheme that analytically determines the optimal weights for balancing regression and classification tasks.
We introduce MTLComb, an MTL algorithm and software package encompassing optimization procedures, training protocols, and hyper parameter estimation procedures.
arXiv Detail & Related papers (2024-05-16T08:07:25Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - Low-Rank Multitask Learning based on Tensorized SVMs and LSSVMs [65.42104819071444]
Multitask learning (MTL) leverages task-relatedness to enhance performance.
We employ high-order tensors, with each mode corresponding to a task index, to naturally represent tasks referenced by multiple indices.
We propose a general framework of low-rank MTL methods with tensorized support vector machines (SVMs) and least square support vector machines (LSSVMs)
arXiv Detail & Related papers (2023-08-30T14:28:26Z) - Feature Decomposition for Reducing Negative Transfer: A Novel Multi-task
Learning Method for Recommender System [35.165907482126464]
We propose a novel multi-task learning method termed Feature Decomposition Network (FDN)
The key idea of the proposed FDN is reducing the phenomenon of feature redundancy by explicitly decomposing features into task-specific features and task-shared features with carefully designed constraints.
Experimental results show that our proposed FDN can outperform the state-of-the-art (SOTA) methods by a noticeable margin.
arXiv Detail & Related papers (2023-02-10T03:08:37Z) - Multi-Task Recommendations with Reinforcement Learning [20.587553899753903]
Multi-task Learning (MTL) has yielded immense success in Recommender System (RS) applications.
This paper proposes a Reinforcement Learning (RL) enhanced MTL framework, namely RMTL, to combine the losses of different recommendation tasks using dynamic weights.
Experiments on two real-world public datasets demonstrate the effectiveness of RMTL with a higher AUC against state-of-the-art MTL-based recommendation models.
arXiv Detail & Related papers (2023-02-07T09:11:17Z) - "It's a Match!" -- A Benchmark of Task Affinity Scores for Joint
Learning [74.14961250042629]
Multi-Task Learning (MTL) promises attractive, characterizing the conditions of its success is still an open problem in Deep Learning.
Estimateing task affinity for joint learning is a key endeavor.
Recent work suggests that the training conditions themselves have a significant impact on the outcomes of MTL.
Yet, the literature is lacking a benchmark to assess the effectiveness of tasks affinity estimation techniques.
arXiv Detail & Related papers (2023-01-07T15:16:35Z) - Mitigating Negative Transfer in Multi-Task Learning with Exponential
Moving Average Loss Weighting Strategies [0.981328290471248]
Multi-Task Learning (MTL) is a growing subject of interest in deep learning.
MTL can be impractical as certain tasks can dominate training and hurt performance in others.
We propose techniques for loss balancing based on scaling by the exponential moving average.
arXiv Detail & Related papers (2022-11-22T09:22:48Z) - Multi-Task Learning as a Bargaining Game [63.49888996291245]
In Multi-task learning (MTL), a joint model is trained to simultaneously make predictions for several tasks.
Since the gradients of these different tasks may conflict, training a joint model for MTL often yields lower performance than its corresponding single-task counterparts.
We propose viewing the gradients combination step as a bargaining game, where tasks negotiate to reach an agreement on a joint direction of parameter update.
arXiv Detail & Related papers (2022-02-02T13:21:53Z) - Cross-Task Consistency Learning Framework for Multi-Task Learning [9.991706230252708]
We propose a new learning framework for 2-task MTL problem.
We define two new loss terms inspired by cycle-consistency loss and contrastive learning.
We theoretically prove that both losses help the model learn more efficiently and that cross-task consistency loss is better in terms of alignment with the straight-forward predictions.
arXiv Detail & Related papers (2021-11-28T11:55:19Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.