Branches: Efficiently Seeking Optimal Sparse Decision Trees with AO*
- URL: http://arxiv.org/abs/2406.02175v4
- Date: Fri, 31 Jan 2025 14:03:02 GMT
- Title: Branches: Efficiently Seeking Optimal Sparse Decision Trees with AO*
- Authors: Ayman Chaouki, Jesse Read, Albert Bifet,
- Abstract summary: Decision Tree (DT) Learning is a fundamental problem in Interpretable Machine Learning, yet it poses a formidable challenge.
We formulate the problem as an AND/OR graph search which we solve with a novel AO*-type algorithm called Branches.
We prove both optimality and complexity guarantees for Branches and we show that it is more efficient than the state of the art theoretically and on a variety of experiments.
- Score: 12.403737756721467
- License:
- Abstract: Decision Tree (DT) Learning is a fundamental problem in Interpretable Machine Learning, yet it poses a formidable optimisation challenge. Practical algorithms have recently emerged, primarily leveraging Dynamic Programming and Branch & Bound. However, most of these approaches rely on a Depth-First-Search strategy, which is inefficient when searching for DTs at high depths and requires the definition of a maximum depth hyperparameter. Best-First-Search was also employed by other methods to circumvent these issues. The downside of this strategy is its higher memory consumption, as such, it has to be designed in a fully efficient manner that takes full advantage of the problem's structure. We formulate the problem as an AND/OR graph search which we solve with a novel AO*-type algorithm called Branches. We prove both optimality and complexity guarantees for Branches and we show that it is more efficient than the state of the art theoretically and on a variety of experiments. Furthermore, Branches supports non-binary features unlike the other methods, we show that this property can further induce larger gains in computational efficiency.
Related papers
- Optimal Classification Trees for Continuous Feature Data Using Dynamic Programming with Branch-and-Bound [1.3654846342364308]
An optimal classification tree that maximizes training performance within a given size limit is NP-hard, and in practice, most state-of-the-art methods do not scale beyond computing optimal trees of depth three.
We propose a novel algorithm that optimize trees directly on the continuous feature data using dynamic programming with branch-and-bound.
Our experiments demonstrate that these techniques improve runtime by one or more orders of magnitude over state-of-the-art optimal methods and improve test accuracy by 5% over greedys.
arXiv Detail & Related papers (2025-01-14T07:46:33Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Quant-BnB: A Scalable Branch-and-Bound Method for Optimal Decision Trees
with Continuous Features [5.663538370244174]
We present a new discrete optimization method based on branch-and-bound (BnB) to obtain optimal decision trees.
Our proposed algorithm Quant-BnB shows significant speedups compared to existing approaches for shallow optimal trees on various real datasets.
arXiv Detail & Related papers (2022-06-23T17:19:29Z) - Learning to Hash Robustly, with Guarantees [79.68057056103014]
In this paper, we design an NNS algorithm for the Hamming space that has worst-case guarantees essentially matching that of theoretical algorithms.
We evaluate the algorithm's ability to optimize for a given dataset both theoretically and practically.
Our algorithm has a 1.8x and 2.1x better recall on the worst-performing queries to the MNIST and ImageNet datasets.
arXiv Detail & Related papers (2021-08-11T20:21:30Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - A bi-level encoding scheme for the clustered shortest-path tree problem
in multifactorial optimization [1.471992435706872]
The Clustered Shortest-Path Tree Problem (CluSPT) plays an important role in various types of optimization problems in real-life.
Recently, some Multifactorial Evolutionary Algorithm (MFEA) have been introduced to deal with the CluSPT.
This paper describes a MFEA-based approach to solve the CluSPT.
arXiv Detail & Related papers (2021-02-12T13:36:07Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
We present techniques that produce optimal decision trees over a variety of objectives.
We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables.
arXiv Detail & Related papers (2020-06-15T19:00:11Z) - Optimal Sparse Decision Trees [25.043477914272046]
This work introduces the first practical algorithm for optimal decision trees for binary variables.
The algorithm is a co-design of analytical bounds that reduce the search space and modern systems techniques.
Our experiments highlight advantages in scalability, speed, and proof of optimality.
arXiv Detail & Related papers (2019-04-29T17:56:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.