論文の概要: A Pipelined Memristive Neural Network Analog-to-Digital Converter
- arxiv url: http://arxiv.org/abs/2406.02197v1
- Date: Tue, 4 Jun 2024 10:51:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 16:51:53.699097
- Title: A Pipelined Memristive Neural Network Analog-to-Digital Converter
- Title(参考訳): パイプライン化メムリシブニューラルネットワークアナログ-ディジタル変換器
- Authors: Loai Danial, Kanishka Sharma, Shahar Kvatinsky,
- Abstract要約: 本稿では,4ビットコンバータのパイプラインに基づくスケーラブルでモジュール化されたニューラルネットワークADCアーキテクチャを提案する。
8ビットパイプライン ADC は 0.18 LSB INL, 0.20 LSB DNL, 7.6 ENOB, 0.97 fJ/conv FOM を達成する。
- 参考スコア(独自算出の注目度): 0.24578723416255754
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the advent of high-speed, high-precision, and low-power mixed-signal systems, there is an ever-growing demand for accurate, fast, and energy-efficient analog-to-digital (ADCs) and digital-to-analog converters (DACs). Unfortunately, with the downscaling of CMOS technology, modern ADCs trade off speed, power and accuracy. Recently, memristive neuromorphic architectures of four-bit ADC/DAC have been proposed. Such converters can be trained in real-time using machine learning algorithms, to break through the speedpower-accuracy trade-off while optimizing the conversion performance for different applications. However, scaling such architectures above four bits is challenging. This paper proposes a scalable and modular neural network ADC architecture based on a pipeline of four-bit converters, preserving their inherent advantages in application reconfiguration, mismatch selfcalibration, noise tolerance, and power optimization, while approaching higher resolution and throughput in penalty of latency. SPICE evaluation shows that an 8-bit pipelined ADC achieves 0.18 LSB INL, 0.20 LSB DNL, 7.6 ENOB, and 0.97 fJ/conv FOM. This work presents a significant step towards the realization of large-scale neuromorphic data converters.
- Abstract(参考訳): 高速、高精度、低消費電力の混合信号システムの出現に伴い、精度、高速、エネルギー効率のアナログ-デジタル変換(ADC)とデジタル-アナログ変換器(DAC)の需要はますます高まっている。
残念ながら、CMOS技術のダウンスケールにより、現代のADCはスピード、パワー、精度をトレードオフしている。
近年,4ビットADC/DACの分裂型ニューロモルフィックアーキテクチャが提案されている。
このようなコンバータは、機械学習アルゴリズムを使用してリアルタイムでトレーニングすることができ、異なるアプリケーションに対する変換性能を最適化しながら、速度と精度のトレードオフを突破することができる。
しかし、このようなアーキテクチャを4ビット以上スケールすることは難しい。
本稿では,4ビットコンバータのパイプラインをベースとしたスケーラブルでモジュール化されたニューラルネットワークADCアーキテクチャを提案する。
SPICE評価は、8ビットパイプラインADCが0.18 LSB INL、0.20 LSB DNL、7.6 ENOB、0.97 fJ/conv FOMを達成することを示している。
この研究は、大規模ニューロモルフィックデータコンバータの実現に向けて重要な一歩を踏み出した。
関連論文リスト
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Digital-analog hybrid matrix multiplication processor for optical neural
networks [11.171425574890765]
光ニューラルネットワーク(ONN)のためのディジタルアナログハイブリッド光コンピューティングアーキテクチャを提案する。
しきい値に基づく論理レベルと決定を導入することにより、計算精度を大幅に向上させることができる。
画素誤り率(PER)は18.2dBの信号対雑音比(SNR)で1.8times10-3$以下である。
論文 参考訳(メタデータ) (2024-01-26T18:42:57Z) - ADC/DAC-Free Analog Acceleration of Deep Neural Networks with Frequency
Transformation [2.7488316163114823]
本稿では,アナログ領域の周波数ベーステンソル変換を用いた周波数領域ニューラルネットワークのエネルギー効率向上手法を提案する。
提案手法は,変換行列のトレーニング可能なパラメータを不要にすることで,よりコンパクトなセルを実現する。
16$times$16のクロスバーで8ビット入力処理を行い,Watt当たりの1602テラ演算のエネルギー効率を実現する。
論文 参考訳(メタデータ) (2023-09-04T19:19:39Z) - Leveraging Residue Number System for Designing High-Precision Analog
Deep Neural Network Accelerators [3.4218508703868595]
我々は、残基数システム(RNS)を用いて、複数の低精度演算から高精度演算を構成する。
RNSは6ドルビットの精度しか持たないデータコンバータを用いて、最先端のDNN推論に対して99%のFP32精度を達成できる。
論文 参考訳(メタデータ) (2023-06-15T20:24:18Z) - Practical Conformer: Optimizing size, speed and flops of Conformer for
on-Device and cloud ASR [67.63332492134332]
我々は、デバイス上の制約を満たすのに十分小さく、TPUを高速に推論できる最適化されたコンバータを設計する。
提案するエンコーダは、デバイス上では強力なスタンドアロンエンコーダとして、また高性能なASRパイプラインの第1部として利用することができる。
論文 参考訳(メタデータ) (2023-03-31T23:30:48Z) - RF-Photonic Deep Learning Processor with Shannon-Limited Data Movement [0.0]
光ニューラルネットワーク(ONN)は、超低レイテンシとエネルギー消費を持つ有望な加速器である。
我々は、周波数領域のデータを符号化する乗法的アナログ周波数変換ONN(MAFT-ONN)を導入する。
我々は、生のRF信号で完全にアナログのディープラーニングを演算する最初のハードウェアアクセラレータを実験的に実証した。
論文 参考訳(メタデータ) (2022-07-08T16:37:13Z) - Neural-PIM: Efficient Processing-In-Memory with Neural Approximation of
Peripherals [11.31429464715989]
本稿では,ディープラーニングタスクを効率的に高速化する新しいPIMアーキテクチャを提案する。
アナログ集積回路とニューラル近似周辺回路で必要となるA/D変換を最小化する。
異なるベンチマークによる評価では、Neural-PIMはエネルギー効率を5.36x (1.73x)向上し、スループットを3.43x (1.59x)向上する。
論文 参考訳(メタデータ) (2022-01-30T16:14:49Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - AnalogNets: ML-HW Co-Design of Noise-robust TinyML Models and Always-On
Analog Compute-in-Memory Accelerator [50.31646817567764]
本稿では,キーワードスポッティング (KWS) と視覚覚醒語 (VWW) を常用するTinyMLモデルについて述べる。
アナログ非イデオロギーに面した精度を維持するため、包括的学習手法を詳述する。
また、プログラム可能な最小領域位相変化メモリ(PCM)アナログCiMアクセラレータであるAON-CiMについて述べる。
論文 参考訳(メタデータ) (2021-11-10T10:24:46Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
本研究では,ミリ波(mmWave)大規模マルチインプット多重出力(MIMO)システムのためのエンドツーエンドの深層学習に基づくジョイントトランスシーバ設計アルゴリズムを提案する。
我々は受信したパイロットを受信機でフィードバックビットにマッピングし、さらに送信機でハイブリッドプリコーダにフィードバックビットをマッピングするDNNアーキテクチャを開発した。
論文 参考訳(メタデータ) (2021-10-22T20:49:02Z) - Non-Autoregressive Transformer ASR with CTC-Enhanced Decoder Input [54.82369261350497]
CTCモジュールの予測を精算することでターゲットシーケンスを生成するCTC拡張NARトランスを提案する。
実験結果から,Aishell-1およびAishell-2データセットでは,Aishell-1およびAishell-2データセットの絶対CER劣化が0。
論文 参考訳(メタデータ) (2020-10-28T15:00:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。