Prompting Large Language Models with Human Error Markings for Self-Correcting Machine Translation
- URL: http://arxiv.org/abs/2406.02267v1
- Date: Tue, 4 Jun 2024 12:43:47 GMT
- Title: Prompting Large Language Models with Human Error Markings for Self-Correcting Machine Translation
- Authors: Nathaniel Berger, Stefan Riezler, Miriam Exel, Matthias Huck,
- Abstract summary: Post-editing (PE) is still required to correct errors and to enhance term translation quality in specialized domains.
We present a pilot study of enhancing translation memories (TM) for the needs of correct and consistent term translation in technical domains.
- Score: 11.351365352611658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While large language models (LLMs) pre-trained on massive amounts of unpaired language data have reached the state-of-the-art in machine translation (MT) of general domain texts, post-editing (PE) is still required to correct errors and to enhance term translation quality in specialized domains. In this paper we present a pilot study of enhancing translation memories (TM) produced by PE (source segments, machine translations, and reference translations, henceforth called PE-TM) for the needs of correct and consistent term translation in technical domains. We investigate a light-weight two-step scenario where, at inference time, a human translator marks errors in the first translation step, and in a second step a few similar examples are extracted from the PE-TM to prompt an LLM. Our experiment shows that the additional effort of augmenting translations with human error markings guides the LLM to focus on a correction of the marked errors, yielding consistent improvements over automatic PE (APE) and MT from scratch.
Related papers
- Mitigating the Language Mismatch and Repetition Issues in LLM-based Machine Translation via Model Editing [39.375342978538654]
We focus on utilizing Large Language Models (LLMs) to perform machine translation.
We observe that two patterns of errors frequently occur and drastically affect the translation quality: language mismatch and repetition.
We explore the potential for mitigating these two issues by leveraging model editing methods.
arXiv Detail & Related papers (2024-10-09T16:51:21Z) - Understanding and Addressing the Under-Translation Problem from the Perspective of Decoding Objective [72.83966378613238]
Under-translation and over-translation remain two challenging problems in state-of-the-art Neural Machine Translation (NMT) systems.
We conduct an in-depth analysis on the underlying cause of under-translation in NMT, providing an explanation from the perspective of decoding objective.
We propose employing the confidence of predicting End Of Sentence (EOS) as a detector for under-translation, and strengthening the confidence-based penalty to penalize candidates with a high risk of under-translation.
arXiv Detail & Related papers (2024-05-29T09:25:49Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
Off-target translation remains an unsolved problem, especially for low-resource languages.
Recent works have either designed advanced prompting strategies to highlight the functionality of translation instructions or exploited the in-context learning ability of LLMs.
In this work, we design a two-stage fine-tuning algorithm to improve the instruction-following ability (especially the translation direction) of LLMs.
arXiv Detail & Related papers (2024-03-21T13:47:40Z) - TEaR: Improving LLM-based Machine Translation with Systematic Self-Refinement [26.26493253161022]
Large Language Models (LLMs) have achieved impressive results in Machine Translation (MT)
We introduce a systematic LLM-based self-refinement translation framework, named textbfTEaR.
arXiv Detail & Related papers (2024-02-26T07:58:12Z) - Contextual Refinement of Translations: Large Language Models for Sentence and Document-Level Post-Editing [12.843274390224853]
Large Language Models (LLM's) have demonstrated considerable success in various Natural Language Processing tasks.
We show that they have yet to attain state-of-the-art performance in Neural Machine Translation.
We propose adapting LLM's as Automatic Post-Editors (APE) rather than direct translators.
arXiv Detail & Related papers (2023-10-23T12:22:15Z) - Towards Effective Disambiguation for Machine Translation with Large
Language Models [65.80775710657672]
We study the capabilities of large language models to translate "ambiguous sentences"
Experiments show that our methods can match or outperform state-of-the-art systems such as DeepL and NLLB in four out of five language directions.
arXiv Detail & Related papers (2023-09-20T22:22:52Z) - The Devil is in the Errors: Leveraging Large Language Models for
Fine-grained Machine Translation Evaluation [93.01964988474755]
AutoMQM is a prompting technique which asks large language models to identify and categorize errors in translations.
We study the impact of labeled data through in-context learning and finetuning.
We then evaluate AutoMQM with PaLM-2 models, and we find that it improves performance compared to just prompting for scores.
arXiv Detail & Related papers (2023-08-14T17:17:21Z) - ParroT: Translating during Chat using Large Language Models tuned with
Human Translation and Feedback [90.20262941911027]
ParroT is a framework to enhance and regulate the translation abilities during chat.
Specifically, ParroT reformulates translation data into the instruction-following style.
We propose three instruction types for finetuning ParroT models, including translation instruction, contrastive instruction, and error-guided instruction.
arXiv Detail & Related papers (2023-04-05T13:12:00Z) - Automatic Correction of Human Translations [8.137198664755598]
We introduce translation error correction (TEC), the task of automatically correcting human-generated translations.
We show that human errors in TEC exhibit a more diverse range of errors and far fewer translation errors than the MT errors in automatic post-editing datasets.
arXiv Detail & Related papers (2022-06-17T07:30:55Z) - Language Model Prior for Low-Resource Neural Machine Translation [85.55729693003829]
We propose a novel approach to incorporate a LM as prior in a neural translation model (TM)
We add a regularization term, which pushes the output distributions of the TM to be probable under the LM prior.
Results on two low-resource machine translation datasets show clear improvements even with limited monolingual data.
arXiv Detail & Related papers (2020-04-30T16:29:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.