Disentangled Representation via Variational AutoEncoder for Continuous Treatment Effect Estimation
- URL: http://arxiv.org/abs/2406.02310v1
- Date: Tue, 4 Jun 2024 13:41:07 GMT
- Title: Disentangled Representation via Variational AutoEncoder for Continuous Treatment Effect Estimation
- Authors: Ruijing Cui, Jianbin Sun, Bingyu He, Kewei Yang, Bingfeng Ge,
- Abstract summary: We propose a novel Dose-Response curve estimator via Variational AutoEncoder (DRVAE)
We show that our model outperforms the current state-of-the-art methods.
- Score: 1.105274635981989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuous treatment effect estimation holds significant practical importance across various decision-making and assessment domains, such as healthcare and the military. However, current methods for estimating dose-response curves hinge on balancing the entire representation by treating all covariates as confounding variables. Although various approaches disentangle covariates into different factors for treatment effect estimation, they are confined to binary treatment settings. Moreover, observational data are often tainted with non-causal noise information that is imperceptible to the human. Hence, in this paper, we propose a novel Dose-Response curve estimator via Variational AutoEncoder (DRVAE) disentangled covariates representation. Our model is dedicated to disentangling covariates into instrumental factors, confounding factors, adjustment factors, and external noise factors, thereby facilitating the estimation of treatment effects under continuous treatment settings by balancing the disentangled confounding factors. Extensive results on synthetic and semi-synthetic datasets demonstrate that our model outperforms the current state-of-the-art methods.
Related papers
- Estimating Individual Dose-Response Curves under Unobserved Confounders from Observational Data [6.166869525631879]
We present ContiVAE, a novel framework for estimating causal effects of continuous treatments, measured by individual dose-response curves.
We show that ContiVAE outperforms existing methods by up to 62%, demonstrating its robustness and flexibility.
arXiv Detail & Related papers (2024-10-21T07:24:26Z) - Contrastive Balancing Representation Learning for Heterogeneous Dose-Response Curves Estimation [34.20279432270329]
Estimating the individuals' potential response to varying treatment doses is crucial for decision-making in areas such as precision medicine and management science.
We propose a novel Contrastive balancing Representation learning Network using a partial distance measure, called CRNet, for estimating the heterogeneous dose-response curves.
arXiv Detail & Related papers (2024-03-21T08:41:53Z) - Individualized Multi-Treatment Response Curves Estimation using RBF-net with Shared Neurons [1.1119247609126184]
Our non-parametric modeling of the response curves relies on radial basis function (RBF)-nets with shared hidden neurons.
Applying our proposed method to MIMIC data, we obtain several interesting findings related to the impact of different treatment strategies on the length of ICU stay and 12-hour SOFA score for sepsis patients who are home-discharged.
arXiv Detail & Related papers (2024-01-29T21:13:01Z) - Adversarially Balanced Representation for Continuous Treatment Effect
Estimation [6.469020202994118]
In this paper, we consider the more practical and challenging scenario in which the treatment is a continuous variable.
We propose the adversarial counterfactual regression network (ACFR) that adversarially minimizes the representation imbalance in terms of KL divergence.
Our experimental evaluation on semi-synthetic datasets demonstrates the empirical superiority of ACFR over a range of state-of-the-art methods.
arXiv Detail & Related papers (2023-12-17T00:46:16Z) - Causal Dynamic Variational Autoencoder for Counterfactual Regression in
Longitudinal Data [3.662229789022107]
Estimating treatment effects over time is relevant in many real-world applications, such as precision medicine, epidemiology, economy, and marketing.
We take a different perspective by assuming unobserved risk factors, i.e., adjustment variables that affect only the sequence of outcomes.
We address the challenges posed by time-varying effects and unobserved adjustment variables.
arXiv Detail & Related papers (2023-10-16T16:32:35Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
A central obstacle in the objective assessment of treatment effect (TE) estimators in randomized control trials (RCTs) is the lack of ground truth (or validation set) to test their performance.
We provide a novel cross-validation-like methodology to address this challenge.
We evaluate our methodology across 709 RCTs implemented in the Amazon supply chain.
arXiv Detail & Related papers (2021-12-14T17:53:01Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
We introduce the Disentangled Counterfactual Recurrent Network (DCRN), a sequence-to-sequence architecture that estimates treatment outcomes over time.
With an architecture that is completely inspired by the causal structure of treatment influence over time, we advance forecast accuracy and disease understanding.
We demonstrate that DCRN outperforms current state-of-the-art methods in forecasting treatment responses, on both real and simulated data.
arXiv Detail & Related papers (2021-12-07T16:40:28Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Learning Decomposed Representation for Counterfactual Inference [53.36586760485262]
The fundamental problem in treatment effect estimation from observational data is confounder identification and balancing.
Most of the previous methods realized confounder balancing by treating all observed pre-treatment variables as confounders, ignoring further identifying confounders and non-confounders.
We propose a synergistic learning framework to 1) identify confounders by learning representations of both confounders and non-confounders, 2) balance confounder with sample re-weighting technique, and simultaneously 3) estimate the treatment effect in observational studies via counterfactual inference.
arXiv Detail & Related papers (2020-06-12T09:50:42Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.