Estimating Individual Dose-Response Curves under Unobserved Confounders from Observational Data
- URL: http://arxiv.org/abs/2410.15706v1
- Date: Mon, 21 Oct 2024 07:24:26 GMT
- Title: Estimating Individual Dose-Response Curves under Unobserved Confounders from Observational Data
- Authors: Shutong Chen, Yang Li,
- Abstract summary: We present ContiVAE, a novel framework for estimating causal effects of continuous treatments, measured by individual dose-response curves.
We show that ContiVAE outperforms existing methods by up to 62%, demonstrating its robustness and flexibility.
- Score: 6.166869525631879
- License:
- Abstract: Estimating an individual's potential response to continuously varied treatments is crucial for addressing causal questions across diverse domains, from healthcare to social sciences. However, existing methods are limited either to estimating causal effects of binary treatments, or scenarios where all confounding variables are measurable. In this work, we present ContiVAE, a novel framework for estimating causal effects of continuous treatments, measured by individual dose-response curves, considering the presence of unobserved confounders using observational data. Leveraging a variational auto-encoder with a Tilted Gaussian prior distribution, ContiVAE models the hidden confounders as latent variables, and is able to predict the potential outcome of any treatment level for each individual while effectively capture the heterogeneity among individuals. Experiments on semi-synthetic datasets show that ContiVAE outperforms existing methods by up to 62%, demonstrating its robustness and flexibility. Application on a real-world dataset illustrates its practical utility.
Related papers
- Contrastive Balancing Representation Learning for Heterogeneous Dose-Response Curves Estimation [34.20279432270329]
Estimating the individuals' potential response to varying treatment doses is crucial for decision-making in areas such as precision medicine and management science.
We propose a novel Contrastive balancing Representation learning Network using a partial distance measure, called CRNet, for estimating the heterogeneous dose-response curves.
arXiv Detail & Related papers (2024-03-21T08:41:53Z) - Causal Dynamic Variational Autoencoder for Counterfactual Regression in
Longitudinal Data [3.662229789022107]
Estimating treatment effects over time is relevant in many real-world applications, such as precision medicine, epidemiology, economy, and marketing.
We take a different perspective by assuming unobserved risk factors, i.e., adjustment variables that affect only the sequence of outcomes.
We address the challenges posed by time-varying effects and unobserved adjustment variables.
arXiv Detail & Related papers (2023-10-16T16:32:35Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Variational Temporal Deconfounder for Individualized Treatment Effect
Estimation from Longitudinal Observational Data [8.347630187110004]
Existing approaches for estimating treatment effects from longitudinal observational data are usually built upon a strong assumption of "unconfoundedness"
We propose the Variational Temporal Deconfounder (VTD), an approach that leverages deep variational embeddings in the longitudinal setting using proxies.
We test our VTD method on both synthetic and real-world clinical data, and the results show that our approach is effective when hidden confounding is the leading bias compared to other existing models.
arXiv Detail & Related papers (2022-07-23T16:43:12Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Estimating Individual Treatment Effects with Time-Varying Confounders [9.784193264717098]
Estimating individual treatment effect (ITE) from observational data is meaningful and practical in healthcare.
Existing work mainly relies on the strong ignorability assumption that no hidden confounders exist.
We propose Deep Sequential Weighting (DSW) for estimating ITE with time-varying confounders.
arXiv Detail & Related papers (2020-08-27T02:21:56Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Learning Decomposed Representation for Counterfactual Inference [53.36586760485262]
The fundamental problem in treatment effect estimation from observational data is confounder identification and balancing.
Most of the previous methods realized confounder balancing by treating all observed pre-treatment variables as confounders, ignoring further identifying confounders and non-confounders.
We propose a synergistic learning framework to 1) identify confounders by learning representations of both confounders and non-confounders, 2) balance confounder with sample re-weighting technique, and simultaneously 3) estimate the treatment effect in observational studies via counterfactual inference.
arXiv Detail & Related papers (2020-06-12T09:50:42Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.