Translation Deserves Better: Analyzing Translation Artifacts in Cross-lingual Visual Question Answering
- URL: http://arxiv.org/abs/2406.02331v1
- Date: Tue, 4 Jun 2024 14:00:02 GMT
- Title: Translation Deserves Better: Analyzing Translation Artifacts in Cross-lingual Visual Question Answering
- Authors: ChaeHun Park, Koanho Lee, Hyesu Lim, Jaeseok Kim, Junmo Park, Yu-Jung Heo, Du-Seong Chang, Jaegul Choo,
- Abstract summary: Building a reliable visual question answering(VQA) system across different languages is a challenging problem.
Recent studies have employed machine translation systems for the cross-lingual VQA task.
- Score: 29.703811132512573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building a reliable visual question answering~(VQA) system across different languages is a challenging problem, primarily due to the lack of abundant samples for training. To address this challenge, recent studies have employed machine translation systems for the cross-lingual VQA task. This involves translating the evaluation samples into a source language (usually English) and using monolingual models (i.e., translate-test). However, our analysis reveals that translated texts contain unique characteristics distinct from human-written ones, referred to as translation artifacts. We find that these artifacts can significantly affect the models, confirmed by extensive experiments across diverse models, languages, and translation processes. In light of this, we present a simple data augmentation strategy that can alleviate the adverse impacts of translation artifacts.
Related papers
- A Data Selection Approach for Enhancing Low Resource Machine Translation Using Cross-Lingual Sentence Representations [0.4499833362998489]
This study focuses on the case of English-Marathi language pairs, where existing datasets are notably noisy.
To mitigate the impact of data quality issues, we propose a data filtering approach based on cross-lingual sentence representations.
Results demonstrate a significant improvement in translation quality over the baseline post-filtering with IndicSBERT.
arXiv Detail & Related papers (2024-09-04T13:49:45Z) - Crossing the Threshold: Idiomatic Machine Translation through Retrieval
Augmentation and Loss Weighting [66.02718577386426]
We provide a simple characterization of idiomatic translation and related issues.
We conduct a synthetic experiment revealing a tipping point at which transformer-based machine translation models correctly default to idiomatic translations.
To improve translation of natural idioms, we introduce two straightforward yet effective techniques.
arXiv Detail & Related papers (2023-10-10T23:47:25Z) - Evaluating and Modeling Attribution for Cross-Lingual Question Answering [80.4807682093432]
This work is the first to study attribution for cross-lingual question answering.
We collect data in 5 languages to assess the attribution level of a state-of-the-art cross-lingual QA system.
We find that a substantial portion of the answers is not attributable to any retrieved passages.
arXiv Detail & Related papers (2023-05-23T17:57:46Z) - Interactive-Chain-Prompting: Ambiguity Resolution for Crosslingual
Conditional Generation with Interaction [38.73550742775257]
A source query in one language may yield several translation options in another language without any extra context.
We propose a novel method interactive-chain prompting that reduces translations into a list of subproblems addressing ambiguities.
We create a dataset exhibiting different linguistic phenomena which leads to ambiguities at inference for four languages.
arXiv Detail & Related papers (2023-01-24T21:08:13Z) - Prompting Large Language Model for Machine Translation: A Case Study [87.88120385000666]
We offer a systematic study on prompting strategies for machine translation.
We examine factors for prompt template and demonstration example selection.
We explore the use of monolingual data and the feasibility of cross-lingual, cross-domain, and sentence-to-document transfer learning.
arXiv Detail & Related papers (2023-01-17T18:32:06Z) - Towards Debiasing Translation Artifacts [15.991970288297443]
We propose a novel approach to reducing translationese by extending an established bias-removal technique.
We use the Iterative Null-space Projection (INLP) algorithm, and show by measuring classification accuracy before and after debiasing, that translationese is reduced at both sentence and word level.
To the best of our knowledge, this is the first study to debias translationese as represented in latent embedding space.
arXiv Detail & Related papers (2022-05-16T21:46:51Z) - Delving Deeper into Cross-lingual Visual Question Answering [115.16614806717341]
We show that simple modifications to the standard training setup can substantially reduce the transfer gap to monolingual English performance.
We analyze cross-lingual VQA across different question types of varying complexity for different multilingual multimodal Transformers.
arXiv Detail & Related papers (2022-02-15T18:22:18Z) - ChrEnTranslate: Cherokee-English Machine Translation Demo with Quality
Estimation and Corrective Feedback [70.5469946314539]
ChrEnTranslate is an online machine translation demonstration system for translation between English and an endangered language Cherokee.
It supports both statistical and neural translation models as well as provides quality estimation to inform users of reliability.
arXiv Detail & Related papers (2021-07-30T17:58:54Z) - Translation Artifacts in Cross-lingual Transfer Learning [51.66536640084888]
We show that machine translation can introduce subtle artifacts that have a notable impact in existing cross-lingual models.
In natural language inference, translating the premise and the hypothesis independently can reduce the lexical overlap between them.
We also improve the state-of-the-art in XNLI for the translate-test and zero-shot approaches by 4.3 and 2.8 points, respectively.
arXiv Detail & Related papers (2020-04-09T17:54:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.