The complexity of approximate (coarse) correlated equilibrium for incomplete information games
- URL: http://arxiv.org/abs/2406.02357v1
- Date: Tue, 4 Jun 2024 14:35:27 GMT
- Title: The complexity of approximate (coarse) correlated equilibrium for incomplete information games
- Authors: Binghui Peng, Aviad Rubinstein,
- Abstract summary: We study the complexity of decentralized learning of approximate correlated equilibria in incomplete information games.
Our lower bound holds even for the easier solution concept of $epsilon$-approximate $mathitco$ correlated equilibrium.
- Score: 16.96984593866157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the iteration complexity of decentralized learning of approximate correlated equilibria in incomplete information games. On the negative side, we prove that in $\mathit{extensive}$-$\mathit{form}$ $\mathit{games}$, assuming $\mathsf{PPAD} \not\subset \mathsf{TIME}(n^{\mathsf{polylog}(n)})$, any polynomial-time learning algorithms must take at least $2^{\log_2^{1-o(1)}(|\mathcal{I}|)}$ iterations to converge to the set of $\epsilon$-approximate correlated equilibrium, where $|\mathcal{I}|$ is the number of nodes in the game and $\epsilon > 0$ is an absolute constant. This nearly matches, up to the $o(1)$ term, the algorithms of [PR'24, DDFG'24] for learning $\epsilon$-approximate correlated equilibrium, and resolves an open question of Anagnostides, Kalavasis, Sandholm, and Zampetakis [AKSZ'24]. Our lower bound holds even for the easier solution concept of $\epsilon$-approximate $\mathit{coarse}$ correlated equilibrium On the positive side, we give uncoupled dynamics that reach $\epsilon$-approximate correlated equilibria of a $\mathit{Bayesian}$ $\mathit{game}$ in polylogarithmic iterations, without any dependence of the number of types. This demonstrates a separation between Bayesian games and extensive-form games.
Related papers
- Sample-Efficient Linear Regression with Self-Selection Bias [7.605563562103568]
We consider the problem of linear regression with self-selection bias in the unknown-index setting.
We provide a novel and near optimally sample-efficient (in terms of $k$) algorithm to recover $mathbfw_1,ldots,mathbfw_kin.
Our algorithm succeeds under significantly relaxed noise assumptions, and therefore also succeeds in the related setting of max-linear regression.
arXiv Detail & Related papers (2024-02-22T02:20:24Z) - Fast swap regret minimization and applications to approximate correlated
equilibria [20.047624953965965]
For any constant $varepsilon>0$, our algorithm obtains $varepsilon T$-swap regret within only $T = mathsfpolylog(n)$ rounds.
Our algorithm has an exponential dependence on $varepsilon$, but we prove a new, matching lower bound.
arXiv Detail & Related papers (2023-10-30T15:35:24Z) - Cryptographic Hardness of Learning Halfspaces with Massart Noise [59.8587499110224]
We study the complexity of PAC learning halfspaces in the presence of Massart noise.
We show that no-time Massart halfspace learners can achieve error better than $Omega(eta)$, even if the optimal 0-1 error is small.
arXiv Detail & Related papers (2022-07-28T17:50:53Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Near-Optimal Learning of Extensive-Form Games with Imperfect Information [54.55092907312749]
We present the first line of algorithms that require only $widetildemathcalO((XA+YB)/varepsilon2)$ episodes of play to find an $varepsilon$-approximate Nash equilibrium in two-player zero-sum games.
This improves upon the best known sample complexity of $widetildemathcalO((X2A+Y2B)/varepsilon2)$ by a factor of $widetildemathcalO(maxX,
arXiv Detail & Related papers (2022-02-03T18:18:28Z) - When Can We Learn General-Sum Markov Games with a Large Number of
Players Sample-Efficiently? [10.397170312149067]
This paper investigates what learning goals admit better sample complexities in the setting of $m$-player general-sum Markov games.
First, we design algorithms for learning an $epsilon$-Coarse Correlated Equilibrium (CCE) in $widetildemathcalO(H5Smax_ile m A_i / epsilon2)$ episodes.
Second, we consider the important special case of Markov Potential Games, and design an algorithm that learns an $epsilon$-approximate Nash equilibrium within $widet
arXiv Detail & Related papers (2021-10-08T15:06:22Z) - Threshold Phenomena in Learning Halfspaces with Massart Noise [56.01192577666607]
We study the problem of PAC learning halfspaces on $mathbbRd$ with Massart noise under Gaussian marginals.
Our results qualitatively characterize the complexity of learning halfspaces in the Massart model.
arXiv Detail & Related papers (2021-08-19T16:16:48Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - Near-Optimal Reinforcement Learning with Self-Play [50.29853537456737]
We focus on self-play algorithms which learn the optimal policy by playing against itself without any direct supervision.
We propose an optimistic variant of the emphNash Q-learning algorithm with sample complexity $tildemathcalO(SAB)$, and a new emphNash V-learning algorithm with sample complexity $tildemathcalO(S(A+B))$.
arXiv Detail & Related papers (2020-06-22T05:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.