Using Self-supervised Learning Can Improve Model Fairness
- URL: http://arxiv.org/abs/2406.02361v1
- Date: Tue, 4 Jun 2024 14:38:30 GMT
- Title: Using Self-supervised Learning Can Improve Model Fairness
- Authors: Sofia Yfantidou, Dimitris Spathis, Marios Constantinides, Athena Vakali, Daniele Quercia, Fahim Kawsar,
- Abstract summary: Self-supervised learning (SSL) has become the de facto training paradigm of large models.
This study explores the impact of pre-training and fine-tuning strategies on fairness.
We introduce a fairness assessment framework for SSL, comprising five stages: defining dataset requirements, pre-training, fine-tuning with gradual unfreezing, assessing representation similarity conditioned on demographics, and establishing domain-specific evaluation processes.
- Score: 10.028637666224093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised learning (SSL) has become the de facto training paradigm of large models, where pre-training is followed by supervised fine-tuning using domain-specific data and labels. Despite demonstrating comparable performance with supervised methods, comprehensive efforts to assess SSL's impact on machine learning fairness (i.e., performing equally on different demographic breakdowns) are lacking. Hypothesizing that SSL models would learn more generic, hence less biased representations, this study explores the impact of pre-training and fine-tuning strategies on fairness. We introduce a fairness assessment framework for SSL, comprising five stages: defining dataset requirements, pre-training, fine-tuning with gradual unfreezing, assessing representation similarity conditioned on demographics, and establishing domain-specific evaluation processes. We evaluate our method's generalizability on three real-world human-centric datasets (i.e., MIMIC, MESA, and GLOBEM) by systematically comparing hundreds of SSL and fine-tuned models on various dimensions spanning from the intermediate representations to appropriate evaluation metrics. Our findings demonstrate that SSL can significantly improve model fairness, while maintaining performance on par with supervised methods-exhibiting up to a 30% increase in fairness with minimal loss in performance through self-supervision. We posit that such differences can be attributed to representation dissimilarities found between the best- and the worst-performing demographics across models-up to x13 greater for protected attributes with larger performance discrepancies between segments.
Related papers
- A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
Self-supervised learning (SSL) is a machine learning approach where the data itself provides supervision, eliminating the need for external labels.
We study how classification-based evaluation protocols for SSL correlate and how well they predict downstream performance on different dataset types.
arXiv Detail & Related papers (2024-07-16T23:17:36Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - The Common Stability Mechanism behind most Self-Supervised Learning
Approaches [64.40701218561921]
We provide a framework to explain the stability mechanism of different self-supervised learning techniques.
We discuss the working mechanism of contrastive techniques like SimCLR, non-contrastive techniques like BYOL, SWAV, SimSiam, Barlow Twins, and DINO.
We formulate different hypotheses and test them using the Imagenet100 dataset.
arXiv Detail & Related papers (2024-02-22T20:36:24Z) - Evaluating Fairness in Self-supervised and Supervised Models for
Sequential Data [10.626503137418636]
Self-supervised learning (SSL) has become the de facto training paradigm of large models.
This study explores the impact of pre-training and fine-tuning strategies on fairness.
arXiv Detail & Related papers (2024-01-03T09:31:43Z) - Semantic Positive Pairs for Enhancing Visual Representation Learning of Instance Discrimination methods [4.680881326162484]
Self-supervised learning algorithms (SSL) based on instance discrimination have shown promising results.
We propose an approach to identify those images with similar semantic content and treat them as positive instances.
We run experiments on three benchmark datasets: ImageNet, STL-10 and CIFAR-10 with different instance discrimination SSL approaches.
arXiv Detail & Related papers (2023-06-28T11:47:08Z) - On Higher Adversarial Susceptibility of Contrastive Self-Supervised
Learning [104.00264962878956]
Contrastive self-supervised learning (CSL) has managed to match or surpass the performance of supervised learning in image and video classification.
It is still largely unknown if the nature of the representation induced by the two learning paradigms is similar.
We identify the uniform distribution of data representation over a unit hypersphere in the CSL representation space as the key contributor to this phenomenon.
We devise strategies that are simple, yet effective in improving model robustness with CSL training.
arXiv Detail & Related papers (2022-07-22T03:49:50Z) - Self-Supervision Can Be a Good Few-Shot Learner [42.06243069679068]
We propose an effective unsupervised few-shot learning method, learning representations with self-supervision.
Specifically, we maximize the mutual information (MI) of instances and their representations with a low-bias MI estimator.
We show that self-supervised pre-training can outperform supervised pre-training under the appropriate conditions.
arXiv Detail & Related papers (2022-07-19T10:23:40Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
We show how spurious correlations affect the performance of popular self-supervised learning (SSL) and auto-encoder based models (AE)
We develop a novel evaluation scheme with the linear head trained on out-of-distribution (OOD) data, to isolate the performance of the pre-trained models from a potential bias of the linear head used for evaluation.
arXiv Detail & Related papers (2022-06-17T16:18:28Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z) - A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained
Classification [38.68079253627819]
Our benchmark consists of two fine-grained classification datasets obtained by sampling classes from the Aves and Fungi taxonomy.
We find that recently proposed SSL methods provide significant benefits, and can effectively use out-of-class data to improve performance when deep networks are trained from scratch.
Our work suggests that semi-supervised learning with experts on realistic datasets may require different strategies than those currently prevalent in the literature.
arXiv Detail & Related papers (2021-04-01T17:59:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.