論文の概要: Automatic Construction of Pattern Classifiers Capable of Continuous Incremental Learning and Unlearning Tasks Based on Compact-Sized Probabilistic Neural Network
- arxiv url: http://arxiv.org/abs/2501.00725v1
- Date: Wed, 01 Jan 2025 05:02:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:46.771227
- Title: Automatic Construction of Pattern Classifiers Capable of Continuous Incremental Learning and Unlearning Tasks Based on Compact-Sized Probabilistic Neural Network
- Title(参考訳): 小型確率的ニューラルネットワークに基づく連続的なインクリメンタル学習および未学習課題が可能なパターン分類器の自動構築
- Authors: Tetsuya Hoya, Shunpei Morita,
- Abstract要約: 本稿では,確率論的ニューラルネットワークモデルを用いたパターン分類手法を提案する。
この戦略は、連続的な漸進的な学習と未学習タスクが可能な、コンパクトな確率的ニューラルネットワークに基づいている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper proposes a novel approach to pattern classification using a probabilistic neural network model. The strategy is based on a compact-sized probabilistic neural network capable of continuous incremental learning and unlearning tasks. The network is constructed/reconstructed using a simple, one-pass network-growing algorithm with no hyperparameter tuning. Then, given the training dataset, its structure and parameters are automatically determined and can be dynamically varied in continual incremental and decremental learning situations. The algorithm proposed in this work involves no iterative or arduous matrix-based parameter approximations but a simple data-driven updating scheme. Simulation results using nine publicly available databases demonstrate the effectiveness of this approach, showing that compact-sized probabilistic neural networks constructed have a much smaller number of hidden units compared to the original probabilistic neural network model and yet can achieve a similar classification performance to that of multilayer perceptron neural networks in standard classification tasks, while also exhibiting sufficient capability in continuous class incremental learning and unlearning tasks.
- Abstract(参考訳): 本稿では,確率論的ニューラルネットワークモデルを用いたパターン分類手法を提案する。
この戦略は、連続的な漸進的な学習と未学習タスクが可能な、コンパクトな確率的ニューラルネットワークに基づいている。
ネットワークは、ハイパーパラメータチューニングのない単純なワンパスネットワーク成長アルゴリズムを用いて構築・再構成される。
そして、トレーニングデータセットが与えられた場合、その構造とパラメータを自動的に決定し、連続的な漸進的および退行的学習状況において動的に変化させることができる。
この研究で提案されるアルゴリズムは、反復的あるいは頑健な行列ベースのパラメータ近似ではなく、単純なデータ駆動更新スキームを含む。
9つの公開データベースを用いたシミュレーションの結果、構築されたコンパクトな確率的ニューラルネットワークは、元の確率的ニューラルネットワークモデルに比べて隠れた単位数がはるかに少ないが、標準的な分類タスクにおける多層パーセプトロンニューラルネットワークと同様の分類性能を達成でき、また、連続的なクラスインクリメンタル学習や未学習タスクにおいて十分な能力を発揮することを示した。
関連論文リスト
- NEAR: A Training-Free Pre-Estimator of Machine Learning Model Performance [0.0]
我々は、トレーニングなしで最適なニューラルネットワークを特定するために、アクティベーションランク(NEAR)によるゼロコストプロキシネットワーク表現を提案する。
このネットワークスコアとNAS-Bench-101とNATS-Bench-SSS/TSSのモデル精度の最先端相関を実証した。
論文 参考訳(メタデータ) (2024-08-16T14:38:14Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Neural Network Pruning by Gradient Descent [7.427858344638741]
我々は,Gumbel-Softmaxテクニックを取り入れた,新しい,かつ簡単なニューラルネットワークプルーニングフレームワークを提案する。
ネットワークパラメータの0.15%しか持たないMNISTデータセット上で、高い精度を維持しながら、例外的な圧縮能力を実証する。
我々は,ディープラーニングプルーニングと解釈可能な機械学習システム構築のための,有望な新たな道を開くと信じている。
論文 参考訳(メタデータ) (2023-11-21T11:12:03Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Sparse Interaction Additive Networks via Feature Interaction Detection
and Sparse Selection [10.191597755296163]
我々は,必要な特徴の組み合わせを効率的に識別する,抽出可能な選択アルゴリズムを開発した。
提案するスパース・インタラクション・アダプティブ・ネットワーク(SIAN)は,単純かつ解釈可能なモデルから完全に接続されたニューラルネットワークへのブリッジを構築する。
論文 参考訳(メタデータ) (2022-09-19T19:57:17Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Dynamic Analysis of Nonlinear Civil Engineering Structures using
Artificial Neural Network with Adaptive Training [2.1202971527014287]
本研究では,適応学習アルゴリズムを用いて人工ニューラルネットワークを開発した。
実地運動記録に対するせん断フレームと岩体構造の時間履歴応答をネットワークで予測できる。
論文 参考訳(メタデータ) (2021-11-21T21:14:48Z) - PAC-Bayesian Learning of Aggregated Binary Activated Neural Networks
with Probabilities over Representations [2.047424180164312]
本研究では,確率論的ニューラルネットワークの予測器としての期待値について検討し,実数値重みによる正規分布を持つ二元活性化ニューラルネットワークの集約に着目した。
我々は、動的プログラミングアプローチのおかげで、深いが狭いニューラルネットワークに対して、正確な計算が引き続き実行可能であることを示す。
論文 参考訳(メタデータ) (2021-10-28T14:11:07Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
本稿では,グラフ畳み込み層のみを利用するGCHPという単純なグラフベースのネットワーク構造を提案する。
我々は,GCHPがトレーニング時間を大幅に短縮し,時間間確率仮定による確率比損失がモデル性能を大幅に改善できることを示した。
論文 参考訳(メタデータ) (2021-07-07T16:59:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。