InGaP $χ^{(2)}$ integrated photonics platform for broadband, ultra-efficient nonlinear conversion and entangled photon generation
- URL: http://arxiv.org/abs/2406.02434v1
- Date: Tue, 4 Jun 2024 15:57:23 GMT
- Title: InGaP $χ^{(2)}$ integrated photonics platform for broadband, ultra-efficient nonlinear conversion and entangled photon generation
- Authors: Joshua Akin, Yunlei Zhao, Yuvraj Misra, A. K. M. Naziul Haque, Kejie Fang,
- Abstract summary: We demonstrate an in gallium diumphosphide (InGaP) integrated photonics platform for broadband, ultra-efficient second-order nonlinear optics.
InGaP nanophotonic waveguide enables second-harmonic generation with a normalized efficiency of $128,000%$/W/cm$2$ at 1.55 $mu$m pump wavelength.
We realize an ultra-bright, broadband time-energy entangled photon source with a pair generation rate of 97 GHz/mW and a bandwidth of 115 nm centered at the telecommunication C band.
- Score: 3.9379777965064524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonlinear optics plays an important role in many areas of science and technology. The advance of nonlinear optics is empowered by the discovery and utilization of materials with growing optical nonlinearity. Here we demonstrate an indium gallium phosphide (InGaP) integrated photonics platform for broadband, ultra-efficient second-order nonlinear optics. The InGaP nanophotonic waveguide enables second-harmonic generation with a normalized efficiency of $128,000\%$/W/cm$^2$ at 1.55 $\mu$m pump wavelength, nearly two orders of magnitude higher than the state of the art in the telecommunication C band. Further, we realize an ultra-bright, broadband time-energy entangled photon source with a pair generation rate of 97 GHz/mW and a bandwidth of 115 nm centered at the telecommunication C band. The InGaP entangled photon source shows high coincidence-to-accidental counts ratio CAR $>10^4$ and two-photon interference visibility $>98\%$. The InGaP second-order nonlinear photonics platform will have wide-ranging implications for non-classical light generation, optical signal processing, and quantum networking.
Related papers
- Perspectives on epitaxial InGaP for quantum and nonlinear optics [4.224843546370802]
We provide an overview of the emerging InGaP $chi(2)$ nonlinear integrated photonics platform and its experimental achievements.
With its exceptional $chi(2)$ nonlinearity and low optical losses, the epitaxial InGaP platform significantly enhances a wide range of second-order nonlinear optical effects.
arXiv Detail & Related papers (2024-10-27T16:41:59Z) - Wafer-Scale Fabrication of InGaP-on-Insulator for Nonlinear and Quantum Photonic Applications [0.0]
InGaP-on-insulator is optimized for visible-to-telecommunication wavelength $chileft (2right)$ nonlinear optical processes.
We demonstrate intrinsic resonator quality factors as high as 324,000 (440,000) for single-resonance modes near 1550 nm.
These results open promising possibilities for entangled-photon, multi-photon, and squeezed light generation.
arXiv Detail & Related papers (2024-06-26T23:15:36Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - High-rate sub-GHz linewidth bichromatic entanglement source for quantum
networking [59.191830955730346]
In this work, we study an entanglement source based on four-wave mixing in a diamond configuration in a warm rubidium vapor.
We are able to achieve in-fiber entangled pair generation rates greater than $107, /s$, orders of magnitude higher than previously reported atomic sources.
arXiv Detail & Related papers (2023-04-11T21:19:30Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - InGaP quantum nanophotonic integrated circuits with 1.5%
nonlinearity-to-loss ratio [0.0]
We realize quantum nanophotonic integrated circuits in thin-film InGaP with a record-high ratio of $1.5%$ between the single-photon nonlinear coupling rate and cavity-photon loss rate.
Our work shows InGaP as a potentially transcending platform for quantum nonlinear optics and quantum information applications.
arXiv Detail & Related papers (2021-05-26T17:34:48Z) - Understanding photoluminescence in semiconductor Bragg-reflection
waveguides: Towards an integrated, GHz-rate telecom photon pair source [47.399953444625154]
semiconductor integrated sources of photon pairs may operate at pump wavelengths much closer to the bandgap of the materials.
We show that devices operating near the long wavelength end of the S-band or the short C-band require temporal filtering shorter than 1 ns.
We predict that shifting the operating wavelengths to the L-band and making small adjustments in the material composition will reduce the amount of photoluminescence to negligible values.
arXiv Detail & Related papers (2020-10-12T06:27:30Z) - Ultra-bright entangled-photon pair generation from an
AlGaAs-on-insulator microring resonator [0.5902314505344212]
Entangled-photon pairs are an essential resource for quantum information technologies.
Here, we demonstrate a novel, ultra-low-loss AlGaAs-on-insulator platform capable of generating time-energy entangled photons.
arXiv Detail & Related papers (2020-09-28T16:45:28Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.