論文の概要: Federated Class-Incremental Learning with Hierarchical Generative Prototypes
- arxiv url: http://arxiv.org/abs/2406.02447v3
- Date: Wed, 23 Oct 2024 15:48:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:52:33.270887
- Title: Federated Class-Incremental Learning with Hierarchical Generative Prototypes
- Title(参考訳): 階層的生成型を用いたフェデレーションクラスインクリメンタルラーニング
- Authors: Riccardo Salami, Pietro Buzzega, Matteo Mosconi, Mattia Verasani, Simone Calderara,
- Abstract要約: Federated Learning (FL)は、複数のデバイス(クライアント)に分散した計算をすることで、ディープモデルのトレーニングを解き放つことを目的としている。
提案手法は,学習可能なプロンプトを用いてトレーニング済みのバックボーンを効率よく微調整することにより,最終層のバイアスを抑える。
提案手法は現状を著しく改善し, 平均精度は+7.8%向上した。
- 参考スコア(独自算出の注目度): 10.532838477096055
- License:
- Abstract: Federated Learning (FL) aims at unburdening the training of deep models by distributing computation across multiple devices (clients) while safeguarding data privacy. On top of that, Federated Continual Learning (FCL) also accounts for data distribution evolving over time, mirroring the dynamic nature of real-world environments. While previous studies have identified Catastrophic Forgetting and Client Drift as primary causes of performance degradation in FCL, we shed light on the importance of Incremental Bias and Federated Bias, which cause models to prioritize classes that are recently introduced or locally predominant, respectively. Our proposal constrains both biases in the last layer by efficiently finetuning a pre-trained backbone using learnable prompts, resulting in clients that produce less biased representations and more biased classifiers. Therefore, instead of solely relying on parameter aggregation, we leverage generative prototypes to effectively balance the predictions of the global model. Our method significantly improves the current State Of The Art, providing an average increase of +7.8% in accuracy. Code to reproduce the results is provided in the suppl. material.
- Abstract(参考訳): Federated Learning (FL) は、複数のデバイス(クライアント)に分散した計算を分散し、データのプライバシを保護することによって、ディープモデルのトレーニングを解き放つことを目的としている。
それに加えて、FCL(Federated Continual Learning)は、リアルタイム環境の動的性質を反映した、時間とともに進化するデータ分散も説明しています。
これまでの研究では、FCLにおけるパフォーマンス劣化の主な原因はカタストロフィック・フォーミングとクライアント・ドリフトであるが、インクリメンタル・バイアスとフェデレーション・バイアスの重要性に光を当てた。
提案手法は,学習可能なプロンプトを用いて事前学習したバックボーンを効率よく微調整することにより,最終層のバイアスを抑える。
したがって、パラメータアグリゲーションのみに頼るのではなく、生成プロトタイプを活用し、グローバルモデルの予測を効果的にバランスさせる。
提案手法は現状を著しく改善し, 平均精度は+7.8%向上した。
結果を再生するコードは suppl で提供される。
素材
関連論文リスト
- FedLF: Adaptive Logit Adjustment and Feature Optimization in Federated Long-Tailed Learning [5.23984567704876]
フェデレーション学習は、分散機械学習におけるプライバシの保護という課題にパラダイムを提供する。
伝統的なアプローチは、グローバルな長期データにおけるクラスワイドバイアスの現象に対処できない。
新しい手法であるFedLFは、適応ロジット調整、連続クラス中心最適化、特徴デコリレーションという、局所的なトレーニングフェーズに3つの修正を導入している。
論文 参考訳(メタデータ) (2024-09-18T16:25:29Z) - Decoupled Federated Learning on Long-Tailed and Non-IID data with
Feature Statistics [20.781607752797445]
特徴統計量(DFL-FS)を用いた2段階分離型フェデレーション学習フレームワークを提案する。
最初の段階では、サーバは、マスキングされたローカル特徴統計クラスタリングによってクライアントのクラスカバレッジ分布を推定する。
第2段階では、DFL-FSは、グローバルな特徴統計に基づくフェデレーションされた特徴再生を使用して、長い尾を持つデータ分布へのモデルの適応性を高める。
論文 参考訳(メタデータ) (2024-03-13T09:24:59Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
フェデレートラーニング(FL)モデルは、不均一なデータによって引き起こされるクライアントのドリフトを経験することが多い。
我々は、クライアントのドリフトに対する別の視点を示し、改善されたローカルモデルを生成することにより、それを緩和することを目指している。
論文 参考訳(メタデータ) (2024-02-10T18:14:57Z) - Generalized Logit Adjustment: Calibrating Fine-tuned Models by Removing Label Bias in Foundation Models [75.9543301303586]
CLIPのようなファンデーションモデルは、追加のトレーニングデータなしで、さまざまなタスクでゼロショット転送を可能にする。
微調整やアンサンブルも一般的に下流のタスクに合うように採用されている。
しかし、先行研究は基礎モデルに固有のバイアスを見落としていると論じる。
論文 参考訳(メタデータ) (2023-10-12T08:01:11Z) - Window-based Model Averaging Improves Generalization in Heterogeneous
Federated Learning [29.140054600391917]
Federated Learning (FL)は、分散ユーザからグローバルモデルを学び、プライバシを保護することを目的としている。
ウィンドウベースアプローチを用いて,異なるラウンドからグローバルモデルを集約するWIMA(Window-based Model Averaging)を提案する。
本実験は,WIMAの分散シフトに対する堅牢性やクライアントサンプリングの悪さを実証し,よりスムーズで安定した学習傾向を示した。
論文 参考訳(メタデータ) (2023-10-02T17:30:14Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
継続学習(CL)は、古いタスクを忘れずに、非定常データストリームで異なるタスク(分類など)を学習することを目的としている。
本稿では,事前学習モデルを用いたCLの簡潔かつ効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-07-05T12:49:02Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
教師付き事前学習データセットのクラス内多様性(クラス毎のサンプル数)とクラス間多様性(クラス数)とのトレードオフの影響について検討した。
トレーニング前のデータセットのサイズが固定された場合、最高のダウンストリームのパフォーマンスは、クラス内/クラス間の多様性のバランスがとれる。
論文 参考訳(メタデータ) (2023-05-20T16:23:50Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Stabilizing and Improving Federated Learning with Non-IID Data and
Client Dropout [15.569507252445144]
ラベル分布スキューによるデータヘテロジェニーティは、フェデレート学習におけるモデル性能を制限する重要な障害であることが示されている。
クロスエントロピー損失を計算するための事前校正ソフトマックス関数を導入することで、シンプルで効果的なフレームワークを提案する。
非IIDデータとクライアントドロップアウトの存在下で、既存のベースラインよりも優れたモデル性能を示す。
論文 参考訳(メタデータ) (2023-03-11T05:17:59Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。