論文の概要: Stabilizing and Improving Federated Learning with Non-IID Data and
Client Dropout
- arxiv url: http://arxiv.org/abs/2303.06314v2
- Date: Wed, 15 Mar 2023 17:30:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 10:45:04.415047
- Title: Stabilizing and Improving Federated Learning with Non-IID Data and
Client Dropout
- Title(参考訳): 非IIDデータによるフェデレーション学習の安定化と改善とクライアントドロップアウト
- Authors: Jian Xu, Meiling Yang, Wenbo Ding, Shao-Lun Huang
- Abstract要約: ラベル分布スキューによるデータヘテロジェニーティは、フェデレート学習におけるモデル性能を制限する重要な障害であることが示されている。
クロスエントロピー損失を計算するための事前校正ソフトマックス関数を導入することで、シンプルで効果的なフレームワークを提案する。
非IIDデータとクライアントドロップアウトの存在下で、既存のベースラインよりも優れたモデル性能を示す。
- 参考スコア(独自算出の注目度): 15.569507252445144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The label distribution skew induced data heterogeniety has been shown to be a
significant obstacle that limits the model performance in federated learning,
which is particularly developed for collaborative model training over
decentralized data sources while preserving user privacy. This challenge could
be more serious when the participating clients are in unstable circumstances
and dropout frequently. Previous work and our empirical observations
demonstrate that the classifier head for classification task is more sensitive
to label skew and the unstable performance of FedAvg mainly lies in the
imbalanced training samples across different classes. The biased classifier
head will also impact the learning of feature representations. Therefore,
maintaining a balanced classifier head is of significant importance for
building a better global model. To this end, we propose a simple yet effective
framework by introducing a prior-calibrated softmax function for computing the
cross-entropy loss and a prototype-based feature augmentation scheme to
re-balance the local training, which are lightweight for edge devices and can
facilitate the global model aggregation. The improved model performance over
existing baselines in the presence of non-IID data and client dropout is
demonstrated by conducting extensive experiments on benchmark classification
tasks.
- Abstract(参考訳): ラベル分布スキュー誘導データヘテロジェニーティは,ユーザプライバシを保護しながら,特に分散データソース上での協調モデルトレーニングのために開発されたフェデレーション学習におけるモデル性能を制限する重要な障害であることが示されている。
この課題は、参加するクライアントが不安定な状況にあり、頻繁にドロップアウトする場合にさらに深刻になる可能性がある。
従来の研究と経験的観察から,分類作業用分類器ヘッドはラベルスキューに敏感であり,FedAvgの不安定な性能は,主に異なるクラスにわたる不均衡なトレーニングサンプルにあることが示された。
バイアス付き分類器ヘッドは、特徴表現の学習にも影響を与える。
したがって、より良いグローバルモデルを構築する上で、バランスの取れた分類器ヘッドを維持することが重要である。
そこで本研究では,クロスエントロピー損失を計算するための事前校正ソフトマックス関数と,エッジデバイスに軽量でグローバルモデルアグリゲーションが容易なローカルトレーニングを再バランスするプロトタイプベースの機能拡張スキームを導入することで,シンプルで効果的なフレームワークを提案する。
非IIDデータとクライアントドロップアウトの存在下での既存のベースラインに対するモデル性能の改善は、ベンチマーク分類タスクに関する広範な実験によって実証される。
関連論文リスト
- Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Self-Damaging Contrastive Learning [92.34124578823977]
ラベルのないデータは一般に不均衡であり、長い尾の分布を示す。
本稿では,クラスを知らずに表現学習を自動的にバランスをとるための,自己学習コントラスト学習という原則的枠組みを提案する。
実験の結果,SDCLRは全体としての精度だけでなく,バランス性も著しく向上することがわかった。
論文 参考訳(メタデータ) (2021-06-06T00:04:49Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z) - Auto-weighted Robust Federated Learning with Corrupted Data Sources [7.475348174281237]
フェデレーション学習はコミュニケーション効率とプライバシ保護のトレーニングプロセスを提供する。
平均損失関数をナイーブに最小化する標準的なフェデレーション学習技術は、データの破損に弱い。
破損したデータソースに対して堅牢性を提供するために、自動重み付けロバストフェデレーテッドラーニング(arfl)を提案します。
論文 参考訳(メタデータ) (2021-01-14T21:54:55Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
コンピュータビジョンにおいて、長い尾のデータセットからの学習は、特に自然画像データセットの繰り返しのテーマである。
本稿では,データ生成機構がラベル条件と特徴分布の間で不変であるメタ分散シナリオを提案する。
これにより、因果データインフレーションの手順を利用してマイノリティクラスの表現を拡大できる。
論文 参考訳(メタデータ) (2020-11-25T00:13:11Z) - Fed-Focal Loss for imbalanced data classification in Federated Learning [2.2172881631608456]
Federated Learningには、デバイスネットワーク上のモデルのトレーニングをコーディネートする中央サーバがある。
課題の1つは、データセットがクラス不均衡である場合の可変トレーニングパフォーマンスである。
焦点損失の線に沿って、適切に分類された例に割り当てられた損失を下げるように、クロスエントロピー損失を変形させることにより、クラス不均衡に対処することを提案する。
論文 参考訳(メタデータ) (2020-11-12T09:52:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。