論文の概要: Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments
- arxiv url: http://arxiv.org/abs/2406.02464v1
- Date: Tue, 4 Jun 2024 16:31:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 15:20:58.477456
- Title: Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments
- Title(参考訳): 複数の環境にまたがる部分同定処理効果のためのメタラーナー
- Authors: Jonas Schweisthal, Dennis Frauen, Mihaela van der Schaar, Stefan Feuerriegel,
- Abstract要約: 観察データから条件平均治療効果(CATE)を推定することは、パーソナライズされた医療など多くの応用に関係している。
ここでは、観測データが複数の環境からやってくる広範囲な環境に焦点を当てる。
任意の機械学習モデルと組み合わせて使用可能な境界を推定するために、異なるモデルに依存しない学習者(いわゆるメタ学習者)を提案する。
- 参考スコア(独自算出の注目度): 67.80453452949303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating the conditional average treatment effect (CATE) from observational data is relevant for many applications such as personalized medicine. Here, we focus on the widespread setting where the observational data come from multiple environments, such as different hospitals, physicians, or countries. Furthermore, we allow for violations of standard causal assumptions, namely, overlap within the environments and unconfoundedness. To this end, we move away from point identification and focus on partial identification. Specifically, we show that current assumptions from the literature on multiple environments allow us to interpret the environment as an instrumental variable (IV). This allows us to adapt bounds from the IV literature for partial identification of CATE by leveraging treatment assignment mechanisms across environments. Then, we propose different model-agnostic learners (so-called meta-learners) to estimate the bounds that can be used in combination with arbitrary machine learning models. We further demonstrate the effectiveness of our meta-learners across various experiments using both simulated and real-world data. Finally, we discuss the applicability of our meta-learners to partial identification in instrumental variable settings, such as randomized controlled trials with non-compliance.
- Abstract(参考訳): 観察データから条件平均治療効果(CATE)を推定することは、パーソナライズされた医療など多くの応用に関係している。
ここでは、異なる病院、医師、国など、さまざまな環境から観測データが得られた広い環境に焦点を当てる。
さらに、標準的な因果仮定、すなわち環境内における重複と不整合の違反を許容する。
この目的のために、我々は点同定から離れ、部分的同定に焦点をあてる。
具体的には、複数の環境における文献からの仮定により、環境を計測変数(IV)として解釈できることを示す。
これにより、環境全体にわたる処理割り当て機構を活用することで、CATEの部分的識別のためのIV文献からのバウンダリを適応することができる。
そこで我々は、任意の機械学習モデルと組み合わせて使用できる境界を推定するために、異なるモデルに依存しない学習者(いわゆるメタ学習者)を提案する。
さらに、シミュレーションデータと実世界データの両方を用いて、様々な実験においてメタラーナーの有効性を実証する。
最後に,非準拠なランダム化制御試験など,機器変数設定における部分的識別へのメタラーナーの適用性について論じる。
関連論文リスト
- Estimating Individual Dose-Response Curves under Unobserved Confounders from Observational Data [6.166869525631879]
本稿では,連続治療の因果効果を推定するための新しいフレームワークであるContiVAEについて述べる。
ContiVAEは既存の手法を最大62%上回り、その堅牢性と柔軟性を示す。
論文 参考訳(メタデータ) (2024-10-21T07:24:26Z) - Double Machine Learning meets Panel Data -- Promises, Pitfalls, and Potential Solutions [0.0]
機械学習(ML)アルゴリズムを用いた因果効果の推定は、適切なフレームワークで使用すれば、機能的なフォーム仮定を緩和するのに役立ちます。
我々は、観測されていない異種性の存在下で、パネルデータに機械学習(DML)を適用する方法を示す。
また、観測された共同設立者に対する観測されていない異種性の影響が、ほとんどの代替手法の性能に重要な役割を担っていることも示している。
論文 参考訳(メタデータ) (2024-09-02T13:59:54Z) - Model-agnostic meta-learners for estimating heterogeneous treatment effects over time [24.91413609641092]
パーソナライズド医療などの多くの分野において、時間とともにヘテロジニアス治療効果(HTE)を推定することが重要である。
モデルに依存しないメタラーナーをいくつか提案し、任意の機械学習モデルと組み合わせて使用することができる。
論文 参考訳(メタデータ) (2024-07-07T07:07:48Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Conditionally Invariant Representation Learning for Disentangling
Cellular Heterogeneity [25.488181126364186]
本稿では,不必要な変数や乱れに条件付き不変な表現を学習するために,ドメインの可変性を活用する新しい手法を提案する。
単細胞ゲノム学におけるデータ統合など,生物の課題に対して本手法を適用した。
具体的には、提案手法は、対象のタスクと無関係なデータバイアスや興味の因果的説明から生物学的信号を解き放つのに役立つ。
論文 参考訳(メタデータ) (2023-07-02T12:52:41Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
本稿では,2つの1次元目標変数間で共有される信号の同定について考察する。
そこで本研究では,地中トラスラベルの存在下で使用可能な評価指標であるICMを提案する。
また、共有変数を学習するための単純かつ効果的なアプローチとして、Deep Canonical Information Decomposition (DCID)を提案する。
論文 参考訳(メタデータ) (2023-06-27T16:59:06Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Differentiable Invariant Causal Discovery [106.87950048845308]
観測データから因果構造を学ぶことは、機械学習の基本的な課題である。
本稿では,不特定変分因果解法(DICD)を提案する。
合成および実世界のデータセットに関する大規模な実験は、DICDがSHDの36%まで最先端の因果発見手法より優れていることを検証している。
論文 参考訳(メタデータ) (2022-05-31T09:29:07Z) - MURAL: An Unsupervised Random Forest-Based Embedding for Electronic
Health Record Data [59.26381272149325]
異なる変数型でデータを表現するための教師なしランダムフォレストを提案する。
muraL forestsは、ノード分割変数がランダムに選択される一連の決定ツリーで構成されている。
提案手法を用いることで,競合するアプローチよりも正確なデータの視覚化と分類が可能であることを示す。
論文 参考訳(メタデータ) (2021-11-19T22:02:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。