論文の概要: Differentiable Invariant Causal Discovery
- arxiv url: http://arxiv.org/abs/2205.15638v2
- Date: Wed, 1 Jun 2022 02:19:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-04 09:09:23.816431
- Title: Differentiable Invariant Causal Discovery
- Title(参考訳): 微分可能な不変因果発見
- Authors: Yu Wang, An Zhang, Xiang Wang, Xiangnan He, Tat-Seng Chua
- Abstract要約: 観測データから因果構造を学ぶことは、機械学習の基本的な課題である。
本稿では,不特定変分因果解法(DICD)を提案する。
合成および実世界のデータセットに関する大規模な実験は、DICDがSHDの36%まで最先端の因果発見手法より優れていることを検証している。
- 参考スコア(独自算出の注目度): 106.87950048845308
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning causal structure from observational data is a fundamental challenge
in machine learning. The majority of commonly used differentiable causal
discovery methods are non-identifiable, turning this problem into a continuous
optimization task prone to data biases. In many real-life situations, data is
collected from different environments, in which the functional relations remain
consistent across environments, while the distribution of additive noises may
vary. This paper proposes Differentiable Invariant Causal Discovery (DICD),
utilizing the multi-environment information based on a differentiable framework
to avoid learning spurious edges and wrong causal directions. Specifically,
DICD aims to discover the environment-invariant causation while removing the
environment-dependent correlation. We further formulate the constraint that
enforces the target structure equation model to maintain optimal across the
environments. Theoretical guarantees for the identifiability of proposed DICD
are provided under mild conditions with enough environments. Extensive
experiments on synthetic and real-world datasets verify that DICD outperforms
state-of-the-art causal discovery methods up to 36% in SHD. Our code will be
open-sourced upon acceptance.
- Abstract(参考訳): 観測データから因果構造を学ぶことは、機械学習の基本的な課題である。
一般的に用いられる微分可能な因果探索法の大部分は識別不可能であり、この問題をデータバイアスによる連続的な最適化タスクに変換する。
多くの実生活環境では、データは異なる環境から収集され、そこでは機能的関係は環境間で一定であり、加法的雑音の分布は様々である。
本稿では,微分可能不変因果関係発見(dicd)を提案し,微分可能枠組みに基づく多環境情報を活用し,スプリアスエッジと誤った因果関係の学習を回避した。
特に、dicdは環境依存相関を取り除きながら、環境不変因果関係を発見することを目的としている。
さらに, 対象構造方程式モデルを強制する制約を定式化し, 環境をまたいで最適に維持する。
提案したDICDの識別可能性に関する理論的保証は,十分な環境条件下で提供される。
合成および実世界のデータセットに関する大規模な実験は、DICDがSHDの36%まで最先端の因果発見手法より優れていることを検証している。
私たちのコードは受け入れ次第オープンソースになります。
関連論文リスト
- Adversarial Causal Augmentation for Graph Covariate Shift [49.79119780818678]
我々は、因果的特徴はデータの安定なサブ構造であり、OOD一般化において重要な役割を担っていると論じる。
グラフ不変学習とデータ拡張の既存の戦略は、限られた環境や不安定な因果的特徴に悩まされている。
本稿では,AdvCA(Adversarial Causal Augmentation)というグラフ拡張戦略を提案する。
論文 参考訳(メタデータ) (2022-11-05T07:55:55Z) - Beyond IID: data-driven decision-making in heterogeneous environments [2.9603743540540357]
本稿では,未知の分布と異なる分布から歴史的サンプルを生成する新しい枠組みを提案する。
私たちは、中心的なデータ駆動ポリシーによって達成可能な最悪の後悔を定量化します。
論文 参考訳(メタデータ) (2022-06-20T08:43:43Z) - ZIN: When and How to Learn Invariance by Environment Inference? [24.191152823045385]
環境分割に基づく頑健で不変なモデルを学ぶための不変学習法が提案されている。
この状況下での学習の不変性は、帰納的バイアスや追加情報なしでは基本的に不可能であることを示す。
本稿では,環境分割と不変表現を協調的に学習するフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-11T10:00:33Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
構造方程式モデル(SEM)は、有向非巡回グラフ(DAG)を介して表される因果関係を推論する効果的な枠組みである。
近年の進歩により、観測データからDAGの有効最大点推定が可能となった。
線形ガウス SEM を特徴付ける DAG 上の分布を推定するための変分フレームワークである BCD Nets を提案する。
論文 参考訳(メタデータ) (2021-12-06T03:35:21Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
我々は因果発見の課題と観察データに焦点をあてる。
因果構造の特異な識別に必要かつ十分な条件のセットを導出する。
論文 参考訳(メタデータ) (2021-10-30T21:32:42Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
離散DAG空間上の自己回帰分布をモデル化したパラメトリック変分族を導入する。
実験では,提案した変分後部が真の後部を良好に近似できることを示した。
論文 参考訳(メタデータ) (2021-06-14T17:52:49Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
本研究では,観測データ分布に特徴的フットプリントが残っており,突発的・因果的影響を解消できることを示す。
汎用ソルバで実装し,高次元問題へのスケールアップが可能なスコアベース因果検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-28T11:07:59Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z) - Information-Theoretic Approximation to Causal Models [0.0]
有限標本から2つの確率変数間の因果方向と因果効果を推定する問題の解法が可能であることを示す。
X と Y のサンプルから生じる分布を高次元確率空間に埋め込む。
本稿では, 線形最適化問題を解くことにより, 因果モデル(IACM)に対する情報理論近似が可能であることを示す。
論文 参考訳(メタデータ) (2020-07-29T18:34:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。