論文の概要: Differentiable Invariant Causal Discovery
- arxiv url: http://arxiv.org/abs/2205.15638v2
- Date: Wed, 1 Jun 2022 02:19:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-04 09:09:23.816431
- Title: Differentiable Invariant Causal Discovery
- Title(参考訳): 微分可能な不変因果発見
- Authors: Yu Wang, An Zhang, Xiang Wang, Xiangnan He, Tat-Seng Chua
- Abstract要約: 観測データから因果構造を学ぶことは、機械学習の基本的な課題である。
本稿では,不特定変分因果解法(DICD)を提案する。
合成および実世界のデータセットに関する大規模な実験は、DICDがSHDの36%まで最先端の因果発見手法より優れていることを検証している。
- 参考スコア(独自算出の注目度): 106.87950048845308
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning causal structure from observational data is a fundamental challenge
in machine learning. The majority of commonly used differentiable causal
discovery methods are non-identifiable, turning this problem into a continuous
optimization task prone to data biases. In many real-life situations, data is
collected from different environments, in which the functional relations remain
consistent across environments, while the distribution of additive noises may
vary. This paper proposes Differentiable Invariant Causal Discovery (DICD),
utilizing the multi-environment information based on a differentiable framework
to avoid learning spurious edges and wrong causal directions. Specifically,
DICD aims to discover the environment-invariant causation while removing the
environment-dependent correlation. We further formulate the constraint that
enforces the target structure equation model to maintain optimal across the
environments. Theoretical guarantees for the identifiability of proposed DICD
are provided under mild conditions with enough environments. Extensive
experiments on synthetic and real-world datasets verify that DICD outperforms
state-of-the-art causal discovery methods up to 36% in SHD. Our code will be
open-sourced upon acceptance.
- Abstract(参考訳): 観測データから因果構造を学ぶことは、機械学習の基本的な課題である。
一般的に用いられる微分可能な因果探索法の大部分は識別不可能であり、この問題をデータバイアスによる連続的な最適化タスクに変換する。
多くの実生活環境では、データは異なる環境から収集され、そこでは機能的関係は環境間で一定であり、加法的雑音の分布は様々である。
本稿では,微分可能不変因果関係発見(dicd)を提案し,微分可能枠組みに基づく多環境情報を活用し,スプリアスエッジと誤った因果関係の学習を回避した。
特に、dicdは環境依存相関を取り除きながら、環境不変因果関係を発見することを目的としている。
さらに, 対象構造方程式モデルを強制する制約を定式化し, 環境をまたいで最適に維持する。
提案したDICDの識別可能性に関する理論的保証は,十分な環境条件下で提供される。
合成および実世界のデータセットに関する大規模な実験は、DICDがSHDの36%まで最先端の因果発見手法より優れていることを検証している。
私たちのコードは受け入れ次第オープンソースになります。
関連論文リスト
- The Implicit Bias of Heterogeneity towards Invariance: A Study of Multi-Environment Matrix Sensing [9.551225697705199]
本稿では,不均一なデータに対するグラディエント・ディキセント(SGD)の暗黙バイアスについて検討し,その暗黙バイアスがモデル学習を不変解へと導くことを示す。
具体的には、各環境において、信号が(i)全環境間で共有される低ランク不変部分と(ii)環境依存のスプリアス成分とを含む多環境低ランク行列センシング問題について理論的に検討する。
重要な洞察は、明示的な正規化を伴わずに各環境で大きなステップサイズの大バッチSGDを逐次使用するだけで、不均一性に起因する振動は、モデル学習の急激なシグナルを確実に阻止することができることである。
論文 参考訳(メタデータ) (2024-03-03T07:38:24Z) - Federated Causal Discovery from Heterogeneous Data [70.31070224690399]
任意の因果モデルと異種データに対応する新しいFCD法を提案する。
これらのアプローチには、データのプライバシを保護するために、生データのプロキシとして要約統計を構築することが含まれる。
提案手法の有効性を示すために, 合成および実データを用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-02-20T18:53:53Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
一般的に用いられる有限差分法に代わる方法を提案する。
我々は,これらの手法を実問題と類似した問題に適用可能であること,および方程式発見アルゴリズムの収束性を確保する能力の観点から評価する。
論文 参考訳(メタデータ) (2023-11-09T23:32:06Z) - Structural restrictions in local causal discovery: identifying direct causes of a target variable [0.9208007322096533]
観測的関節分布から対象変数の直接的な原因の集合を学ぶことは、科学の基本的な問題である。
ここでは、完全なDAGではなく、1つのターゲット変数の直接的な原因を特定することにのみ関心があります。
これにより、識別可能性の仮定を緩和し、より高速で堅牢なアルゴリズムを開発することができる。
論文 参考訳(メタデータ) (2023-07-29T18:31:35Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
本稿では,2つの1次元目標変数間で共有される信号の同定について考察する。
そこで本研究では,地中トラスラベルの存在下で使用可能な評価指標であるICMを提案する。
また、共有変数を学習するための単純かつ効果的なアプローチとして、Deep Canonical Information Decomposition (DCID)を提案する。
論文 参考訳(メタデータ) (2023-06-27T16:59:06Z) - Deep Generative Model for Simultaneous Range Error Mitigation and
Environment Identification [29.827191184889898]
本稿では,環境の同時検出のためのDGM(Deep Generative Model)を提案する。
一般的なUltraワイドバンドデータセットの実験では、レンジエラー軽減、異なる環境へのスケーラビリティ、および同時環境識別における新しい能力の優れた性能が示されている。
論文 参考訳(メタデータ) (2023-05-23T10:16:22Z) - Decorr: Environment Partitioning for Invariant Learning and OOD Generalization [10.799855921851332]
不変学習手法は、複数の環境にまたがる一貫した予測器を特定することを目的としている。
データに固有の環境がなければ、実践者はそれらを手動で定義しなければならない。
この環境分割は不変学習の有効性に影響を及ぼすが、いまだ過小評価されていない。
本稿では,低相関データサブセットを分離することで,データセットを複数の環境に分割することを提案する。
論文 参考訳(メタデータ) (2022-11-18T06:49:35Z) - Unleashing the Power of Graph Data Augmentation on Covariate
Distribution Shift [50.98086766507025]
本稿では,AIA(Adversarial Invariant Augmentation)という,シンプルで効率の良いデータ拡張戦略を提案する。
AIAは、拡張プロセス中に元の安定した特徴を同時に保存しながら、新しい環境をエクスポーレーションし、生成することを目的としている。
論文 参考訳(メタデータ) (2022-11-05T07:55:55Z) - ZIN: When and How to Learn Invariance by Environment Inference? [24.191152823045385]
環境分割に基づく頑健で不変なモデルを学ぶための不変学習法が提案されている。
この状況下での学習の不変性は、帰納的バイアスや追加情報なしでは基本的に不可能であることを示す。
本稿では,環境分割と不変表現を協調的に学習するフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-11T10:00:33Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
離散DAG空間上の自己回帰分布をモデル化したパラメトリック変分族を導入する。
実験では,提案した変分後部が真の後部を良好に近似できることを示した。
論文 参考訳(メタデータ) (2021-06-14T17:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。