論文の概要: Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding
- arxiv url: http://arxiv.org/abs/2406.02472v1
- Date: Tue, 4 Jun 2024 16:42:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 15:20:58.464562
- Title: Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding
- Title(参考訳): 大規模言語モデルを用いた時間的複合イベントの分析 : 時間的・長期的理解に向けてのベンチマーク
- Authors: Zhihan Zhang, Yixin Cao, Chenchen Ye, Yunshan Ma, Lizi Liao, Tat-Seng Chua,
- Abstract要約: 時間的複合イベント(TCE)として、長い期間にわたって多くのニュース記事から構成される複合イベントについて述べる。
本稿では,Large Language Models (LLMs) を用いて,TCE内のイベントチェーンを系統的に抽出し,解析する手法を提案する。
- 参考スコア(独自算出の注目度): 57.62275091656578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The digital landscape is rapidly evolving with an ever-increasing volume of online news, emphasizing the need for swift and precise analysis of complex events. We refer to the complex events composed of many news articles over an extended period as Temporal Complex Event (TCE). This paper proposes a novel approach using Large Language Models (LLMs) to systematically extract and analyze the event chain within TCE, characterized by their key points and timestamps. We establish a benchmark, named TCELongBench, to evaluate the proficiency of LLMs in handling temporal dynamics and understanding extensive text. This benchmark encompasses three distinct tasks - reading comprehension, temporal sequencing, and future event forecasting. In the experiment, we leverage retrieval-augmented generation (RAG) method and LLMs with long context window to deal with lengthy news articles of TCE. Our findings indicate that models with suitable retrievers exhibit comparable performance with those utilizing long context window.
- Abstract(参考訳): デジタルの風景は急速に進化しており、オンラインニュースの量は増え続けており、複雑な出来事の迅速かつ正確な分析の必要性を強調している。
本稿では,時間的複合イベント(TCE: Temporal Complex Event)として,多くのニュース記事からなる複合イベントについて述べる。
本稿では,Large Language Models (LLMs) を用いてTCE内のイベントチェーンを系統的に抽出・解析する手法を提案する。
我々は、時間的ダイナミクスの扱いと広範なテキスト理解におけるLLMの熟練度を評価するため、TCELongBenchというベンチマークを構築した。
このベンチマークは、読み取り理解、時間的シークエンシング、将来のイベント予測という、3つの異なるタスクを含む。
実験では,検索拡張生成法と長いコンテキストウィンドウを持つLLMを用いて,TEの長いニュース記事を扱う。
この結果から,検索に適したモデルでは,長期のコンテキストウインドウを用いたモデルと同等の性能を示した。
関連論文リスト
- TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAPは、時系列データのコンテキスト化ツールとしてLarge Language Models(LLM)を創造的に利用する時系列処理フレームワークである。
TimeCAPには2つの独立したLCMエージェントが組み込まれており、1つは時系列のコンテキストをキャプチャするテキスト要約を生成し、もう1つはより情報のある予測を行うためにこのリッチな要約を使用する。
実世界のデータセットによる実験結果から,TimeCAPは時系列イベント予測の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2025-02-17T04:17:27Z) - Language in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal Narrative [65.84249211767921]
テキスト・アズ・タイム・シリーズ(英語版) (TaTS) は時系列の補助変数であると考えている。
TaTSは、既存の数値のみの時系列モデルにプラグインすることができ、ペア化されたテキストで時系列データを効率的に処理することができる。
論文 参考訳(メタデータ) (2025-02-13T03:43:27Z) - HERA: Improving Long Document Summarization using Large Language Models with Context Packaging and Reordering [6.876612430571396]
HERAと呼ばれる新しい要約生成フレームワークを提案する。
まず、その意味構造によって長い文書をセグメンテーションし、同じ事象に関するテキストセグメントを検索し、最後にそれらを並べ替えて入力コンテキストを形成する。
実験の結果,HERAはROUGE,BERTScore,忠実度測定において基礎モデルよりも優れていた。
論文 参考訳(メタデータ) (2025-02-01T14:55:06Z) - RAPID: Retrieval-Augmented Parallel Inference Drafting for Text-Based Video Event Retrieval [2.9927319356868436]
テキストベースのビデオイベント検索のための既存の手法は、コンテキスト情報の重要な役割を見越して、オブジェクトレベルの記述に重点を置いている。
本稿では,Large Language Models(LLMs)の進歩と,ユーザクエリのセマンティックな修正にアクティベートベースの学習を活用するRAPIDという新しいシステムを提案する。
我々のシステムは、Ho Chi Minh City AI Challenge 2024に参加することによって、スピードと精度の両面で検証され、300時間以上のビデオからイベントを取り出すことに成功した。
論文 参考訳(メタデータ) (2025-01-27T18:45:07Z) - TempoGPT: Enhancing Temporal Reasoning via Quantizing Embedding [13.996105878417204]
本稿では,マルチモーダル時系列データ構築手法とマルチモーダル時系列言語モデル(TLM, TempoGPT)を提案する。
ホワイトボックスシステム内の変数-システム関係を解析することにより,複雑な推論タスクのためのマルチモーダルデータを構築する。
広範な実験により、TempoGPTは時間的情報を正確に知覚し、結論を論理的に推論し、構築された複雑な時系列推論タスクにおける最先端の処理を達成することが示されている。
論文 参考訳(メタデータ) (2025-01-13T13:47:05Z) - Retrieval of Temporal Event Sequences from Textual Descriptions [0.0]
TESRBenchはテキスト記述から時間的イベントシーケンスを検索するためのベンチマークである。
イベントシーケンスの埋め込みと検索のための新しいモデルであるTPP-Embeddingを提案する。
TPP-EmbeddingはTESRBenchデータセットのベースラインモデルよりも優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-10-17T21:35:55Z) - From News to Forecast: Integrating Event Analysis in LLM-Based Time Series Forecasting with Reflection [16.47323362700347]
本稿では,テキストデータと時系列データの両方を解析することで時系列予測を強化する新しい手法を提案する。
言語を媒体として,社会イベントを予測モデルに適応的に統合し,ニュースコンテンツと時系列のゆらぎを一致させてより豊かな洞察を提供する。
具体的には、LSMをベースとしたエージェントを用いて、無関係なニュースを反復的にフィルタリングし、人間ライクな推論を用いて予測を評価する。
論文 参考訳(メタデータ) (2024-09-26T03:50:22Z) - Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA [71.04146366608904]
長いコンテキストモデリング能力は広く注目を集めており、超コンテキストウィンドウを持つLarge Language Models (LLMs) の出現につながっている。
拡張多文書質問応答(QA)によって現実的なシナリオに整合する新しい長文ベンチマークであるLoongを提案する。
Loong氏は、Spotlight Locating, Comparison, Clustering, Chain of Reasoningという、コンテキスト長の4つのタスクを紹介している。
論文 参考訳(メタデータ) (2024-06-25T09:42:56Z) - Evaluating Very Long-Term Conversational Memory of LLM Agents [95.84027826745609]
我々は,高品質で長期的な対話を生成するための,マシン・ヒューマン・パイプラインを導入する。
我々は、各エージェントに画像の共有と反応の能力を持たせる。
生成した会話は、長距離一貫性のために人間のアノテーションによって検証され、編集される。
論文 参考訳(メタデータ) (2024-02-27T18:42:31Z) - Tracking Objects and Activities with Attention for Temporal Sentence
Grounding [51.416914256782505]
時間文 (TSG) は、意味的に自然言語のクエリと一致した時間セグメントを、トリミングされていないセグメントでローカライズすることを目的としている。
本稿では,(A)マルチモーダル・検索空間を生成するクロスモーダル・ターゲット・ジェネレータと(B)マルチモーダル・ターゲットの動作を追跡し,クエリ関連セグメントを予測するテンポラル・センセント・トラッカーとを含む,新しいテンポラル・センセント・トラッカー・ネットワーク(TSTNet)を提案する。
論文 参考訳(メタデータ) (2023-02-21T16:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。