論文の概要: Efficient Retrieval of Temporal Event Sequences from Textual Descriptions
- arxiv url: http://arxiv.org/abs/2410.14043v1
- Date: Thu, 17 Oct 2024 21:35:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:24:58.959956
- Title: Efficient Retrieval of Temporal Event Sequences from Textual Descriptions
- Title(参考訳): テキスト記述による時間事象列の効率的な検索
- Authors: Zefang Liu, Yinzhu Quan,
- Abstract要約: TPP-LLM-Embeddingは、自然言語記述に基づくイベントシーケンスの埋め込みと検索のための統一モデルである。
我々のモデルはイベントタイプと時間の両方をエンコードし、プールを通してシーケンスレベルの表現を生成します。
TPP-LLM-Embeddingは効率的な検索を可能にし、多様なデータセットのベースラインモデルよりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Retrieving temporal event sequences from textual descriptions is essential for applications such as analyzing e-commerce behavior, monitoring social media activities, and tracking criminal incidents. In this paper, we introduce TPP-LLM-Embedding, a unified model for efficiently embedding and retrieving event sequences based on natural language descriptions. Built on the TPP-LLM framework, which integrates large language models with temporal point processes, our model encodes both event types and times, generating a sequence-level representation through pooling. Textual descriptions are embedded using the same architecture, ensuring a shared embedding space for both sequences and descriptions. We optimize a contrastive loss based on similarity between these embeddings, bringing matching pairs closer and separating non-matching ones. TPP-LLM-Embedding enables efficient retrieval and demonstrates superior performance compared to baseline models across diverse datasets.
- Abstract(参考訳): テキスト記述から時間的イベントシーケンスを取得することは、eコマース行動の分析、ソーシャルメディアの活動の監視、犯罪事件の追跡といったアプリケーションに不可欠である。
本稿では,TPP-LLM-Embeddingについて紹介する。
TPP-LLMフレームワークをベースとして,大規模言語モデルと時間点プロセスを統合することで,イベントタイプと時間の両方をエンコードし,プールによるシーケンスレベルの表現を生成する。
テキスト記述は、同じアーキテクチャを使って埋め込み、シーケンスと記述の両方の共有埋め込みスペースを確保する。
これらの埋め込み間の類似性に基づく対照的な損失を最適化し、マッチングペアを近接させ、非マッチングペアを分離する。
TPP-LLM-Embeddingは効率的な検索を可能にし、多様なデータセットのベースラインモデルよりも優れた性能を示す。
関連論文リスト
- Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding [57.62275091656578]
時間的複合イベント(TCE)として、長い期間にわたって多くのニュース記事から構成される複合イベントについて述べる。
本稿では,Large Language Models (LLMs) を用いて,TCE内のイベントチェーンを系統的に抽出し,解析する手法を提案する。
論文 参考訳(メタデータ) (2024-06-04T16:42:17Z) - Pretext Training Algorithms for Event Sequence Data [29.70078362944441]
本稿では,イベントシーケンスデータに適した自己教師付き事前テキスト学習フレームワークを提案する。
私たちのプレテキストタスクは、さまざまなダウンストリームタスクで一般化可能な基礎表現をアンロックします。
論文 参考訳(メタデータ) (2024-02-16T01:25:21Z) - Background Summarization of Event Timelines [13.264991569806572]
本稿では、各時系列更新と関連するイベントの背景要約を補完するバックグラウンドニュース要約のタスクを紹介する。
我々は,既存の時系列データセットをマージしてデータセットを構築し,各ニュースイベント毎の背景要約を書くよう人間アノテータに依頼する。
我々は、最先端の要約システムを用いて強力なベースライン性能を確立し、背景要約を生成するためのクエリ中心の変種を提案する。
論文 参考訳(メタデータ) (2023-10-24T21:30:15Z) - Prompt-augmented Temporal Point Process for Streaming Event Sequence [18.873915278172095]
本稿では,ニューラル・テンポラル・ポイント・プロセス(TPP)モデルを継続的に監視するための新しいフレームワークを提案する。
PromptTPPは、3つの実際のユーザ行動データセットにわたって、最先端のパフォーマンスを一貫して達成する。
論文 参考訳(メタデータ) (2023-10-08T03:41:16Z) - Follow the Timeline! Generating Abstractive and Extractive Timeline
Summary in Chronological Order [78.46986998674181]
時間順で抽象的かつ抽出的な時系列を生成できる統一タイムライン要約器(UTS)を提案する。
我々は、以前の中国の大規模タイムライン要約データセットを拡張し、新しい英語タイムラインデータセットを収集する。
UTSは、自動評価と人的評価の両方の観点から最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-01-02T20:29:40Z) - Zero-Shot On-the-Fly Event Schema Induction [61.91468909200566]
本稿では,大規模な言語モデルを用いて,高レベルなイベント定義,特定のイベント,引数,それらの関係を予測・付与するソースドキュメントを生成する手法を提案する。
我々のモデルを用いて、任意のトピックに関する完全なスキーマを、手動のデータ収集、すなわちゼロショットの方法で、オンザフライで生成することができる。
論文 参考訳(メタデータ) (2022-10-12T14:37:00Z) - CLIP-Event: Connecting Text and Images with Event Structures [123.31452120399827]
視覚言語事前学習モデルを適用したコントラスト学習フレームワークを提案する。
我々は、イベント構造知識を得るために、テキスト情報抽出技術を利用する。
実験により、ゼロショットCLIP-Eventは引数抽出において最先端の教師付きモデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-01-13T17:03:57Z) - Integrating Deep Event-Level and Script-Level Information for Script
Event Prediction [60.67635412135681]
本稿では,MCPredictorと呼ばれるTransformerベースのモデルを提案する。
The experimental results on the wide-useed New York Times corpus showed the effectiveness and superiority of the proposed model。
論文 参考訳(メタデータ) (2021-09-24T07:37:32Z) - Conditional Generation of Temporally-ordered Event Sequences [29.44608199294757]
本稿では,イベントシーケンスの時間性だけでなく,イベント共起を捉えることができる条件生成モデルを提案する。
この単一モデルは、時間的順序付け、与えられたイベント列をそれらが発生した順序にソートすること、イベントを埋め込むことの両方に対処でき、既存のイベントの時間的順序付けシーケンスに適合する新しいイベントを予測できる。
論文 参考訳(メタデータ) (2020-12-31T18:10:18Z) - Team RUC_AIM3 Technical Report at Activitynet 2020 Task 2: Exploring
Sequential Events Detection for Dense Video Captioning [63.91369308085091]
本稿では、イベントシーケンス生成のための新規でシンプルなモデルを提案し、ビデオ中のイベントシーケンスの時間的関係を探索する。
提案モデルでは,非効率な2段階提案生成を省略し,双方向時間依存性を条件としたイベント境界を直接生成する。
総合システムは、チャレンジテストセットの9.894 METEORスコアで、ビデオタスクにおける密封イベントの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-06-14T13:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。