論文の概要: Pretrained Mobility Transformer: A Foundation Model for Human Mobility
- arxiv url: http://arxiv.org/abs/2406.02578v1
- Date: Wed, 29 May 2024 00:07:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-09 15:49:54.087837
- Title: Pretrained Mobility Transformer: A Foundation Model for Human Mobility
- Title(参考訳): Pretrained Mobility Transformer: 人体移動のための基礎モデル
- Authors: Xinhua Wu, Haoyu He, Yanchao Wang, Qi Wang,
- Abstract要約: textbfPretrained textbfMobility textbfTransformer (PMT)
textbfMobility textbfTransformer (PMT)
textbfPretrained textbfMobility textbfTransformer (PMT)
- 参考スコア(独自算出の注目度): 11.713796525742405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ubiquitous mobile devices are generating vast amounts of location-based service data that reveal how individuals navigate and utilize urban spaces in detail. In this study, we utilize these extensive, unlabeled sequences of user trajectories to develop a foundation model for understanding urban space and human mobility. We introduce the \textbf{P}retrained \textbf{M}obility \textbf{T}ransformer (PMT), which leverages the transformer architecture to process user trajectories in an autoregressive manner, converting geographical areas into tokens and embedding spatial and temporal information within these representations. Experiments conducted in three U.S. metropolitan areas over a two-month period demonstrate PMT's ability to capture underlying geographic and socio-demographic characteristics of regions. The proposed PMT excels across various downstream tasks, including next-location prediction, trajectory imputation, and trajectory generation. These results support PMT's capability and effectiveness in decoding complex patterns of human mobility, offering new insights into urban spatial functionality and individual mobility preferences.
- Abstract(参考訳): ユビキタスなモバイルデバイスは、個人が都市空間を詳細にナビゲートし利用する方法を明らかにする、膨大な量の位置情報ベースのサービスデータを生成している。
本研究では,都市空間と人間の移動性を理解するための基礎モデルを構築するために,これらの広範囲な未ラベルのユーザトラジェクトリを利用する。
本稿では, ユーザトラジェクトリを自己回帰的に処理し, 地理的領域をトークンに変換し, 空間的および時間的情報をこれらの表現内に埋め込むためのトランスフォーマアーキテクチャを利用する, PMT (textbf{M}obility \textbf{T}ransformer) を提案する。
2ヶ月間に3つの大都市圏で実施された実験は、PMTが地域の地理的・社会的なデコグラフィー特性を捉える能力を示している。
提案したPMTは、次の位置予測、軌道計算、軌道生成など、様々な下流タスクにまたがる。
これらの結果は、都市空間機能と個人の移動性嗜好に関する新たな洞察を提供する、人間の移動性の複雑なパターンの復号化におけるPMTの能力と有効性を支持する。
関連論文リスト
- Multimodal Contrastive Learning of Urban Space Representations from POI Data [2.695321027513952]
CaLLiPer (Contrastive Language-Location Pre-training) は連続的な都市空間をベクトル表現に埋め込む表現学習モデルである。
ロンドンにおける都市空間表現の学習に適用し,CaLLiPerの有効性を検証する。
論文 参考訳(メタデータ) (2024-11-09T16:24:07Z) - Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
マルチトランスモーション(Multi-Transmotion)は、モダリティ事前トレーニング用に設計された革新的なトランスフォーマーベースのモデルである。
提案手法は,下流タスクにおける各種データセット間の競合性能を示す。
論文 参考訳(メタデータ) (2024-11-04T23:15:21Z) - Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning
Approach [9.56255685195115]
モビリティ・プロファイリングは、モビリティ・データから都市交通の潜在的なパターンを抽出することができる。
デジタルツイン(DT)技術は、コスト効率とパフォーマンス最適化管理の道を開く。
本稿では,移動時ネットワークDTモデルを用いてノードプロファイルを学習するためのデジタルツインモビリティ・プロファイリングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-06T06:37:43Z) - MobilityGPT: Enhanced Human Mobility Modeling with a GPT model [12.01839817432357]
我々はこれらの問題に対処するために、自己回帰生成タスクとして、人間のモビリティモデリングを再構築する。
本稿では,ジオスパティカル・アウェア・ジェネレーティブ・モデルであるモビリティGPTを提案する。
実世界のデータセットの実験では、モビリティGPTは最先端の手法よりも優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-05T18:22:21Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - A generalized vector-field framework for mobility [0.0]
本稿では,任意の種類の移動に有効な個人軌跡から始まる一般ベクトル場表現を提案する。
個人の選挙が運動場のメソスコピック特性をどのように決定するかを示す。
筆者らのフレームワークは, メソスコピックな都市移動において, 隠れ対称性を捉えるための重要なツールである。
論文 参考訳(メタデータ) (2023-09-04T07:50:08Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
この研究は、多様な都市空間時間データセットにアクセスし活用する際の課題に対処する。
都市空間・時空間のビッグデータ用に設計された統合ストレージフォーマットであるアトミックファイルを導入し,40種類の多様なデータセットでその有効性を検証する。
多様なモデルとデータセットを使用して広範な実験を行い、パフォーマンスリーダーボードを確立し、有望な研究方向性を特定する。
論文 参考訳(メタデータ) (2023-08-24T16:20:00Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - Urban Regional Function Guided Traffic Flow Prediction [117.75679676806296]
メタデータとして各領域の機能を利用するPOI-MetaBlockという新しいモジュールを提案する。
我々のモジュールはトラフィックフロー予測の性能を大幅に改善し、メタデータを使用する最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-03-17T06:03:49Z) - Multi-Graph Fusion Networks for Urban Region Embedding [40.97361959702485]
ヒトの移動データから都市部の埋め込みを学習することで、地域の機能を明らかにすることができ、犯罪予測のような相関性はあるものの異なるタスクを可能にする。
クロスドメイン予測タスクを実現するために,MGFN(Multi-graph fusion Network)を提案する。
実験の結果、提案されたMGFNは最先端の手法よりも最大12.35%優れていた。
論文 参考訳(メタデータ) (2022-01-24T15:48:50Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
本稿では, 生物系統学から得られた都市形態の数値分類法を提案する。
我々は同質の都市組織タイプを導出し、それら間の全体形態的類似性を決定することにより、都市形態の階層的分類を生成する。
フレーミングとプレゼンを行った後、プラハとアムステルダムの2都市でテストを行った。
論文 参考訳(メタデータ) (2021-04-30T12:47:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。