論文の概要: A generalized vector-field framework for mobility
- arxiv url: http://arxiv.org/abs/2309.01415v1
- Date: Mon, 4 Sep 2023 07:50:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 19:33:35.184815
- Title: A generalized vector-field framework for mobility
- Title(参考訳): モビリティのための一般化ベクトル場フレームワーク
- Authors: Erjian Liu, Mattia Mazzoli, Xiao-Yong Yan and Jose J. Ramasco
- Abstract要約: 本稿では,任意の種類の移動に有効な個人軌跡から始まる一般ベクトル場表現を提案する。
個人の選挙が運動場のメソスコピック特性をどのように決定するかを示す。
筆者らのフレームワークは, メソスコピックな都市移動において, 隠れ対称性を捉えるための重要なツールである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Trip flow between areas is a fundamental metric for human mobility research.
Given its identification with travel demand and its relevance for
transportation and urban planning, many models have been developed for its
estimation. These models focus on flow intensity, disregarding the information
provided by the local mobility orientation. A field-theoretic approach can
overcome this issue and handling both intensity and direction at once. Here we
propose a general vector-field representation starting from individuals'
trajectories valid for any type of mobility. By introducing four models of
spatial exploration, we show how individuals' elections determine the
mesoscopic properties of the mobility field. Distance optimization in long
displacements and random-like local exploration are necessary to reproduce
empirical field features observed in Chinese logistic data and in New York City
Foursquare check-ins. Our framework is an essential tool to capture hidden
symmetries in mesoscopic urban mobility, it establishes a benchmark to test the
validity of mobility models and opens the doors to the use of field theory in a
wide spectrum of applications.
- Abstract(参考訳): 地域間のトリップフローは、人力研究の基本的な指標である。
交通需要と交通・都市計画との関連性から、その推定のために多くのモデルが開発されている。
これらのモデルは、局所移動方向によって提供される情報を無視して、流れの強度に焦点を当てている。
フィールド理論的なアプローチは、この問題を克服し、強度と方向の両方を同時に扱うことができる。
本稿では,任意の種類の移動に有効な個人軌道から始まる一般ベクトル場表現を提案する。
空間探索の4つのモデルを導入することで,個人の選挙が移動分野のメソスコピック特性をどのように決定するかを示す。
長い変位とランダムな局所探索における距離最適化は、中国のロジスティックデータやニューヨーク市のfoursquareチェックインで観察された経験的フィールド特徴を再現するために必要である。
本手法は,メゾスコピック都市モビリティにおける隠れた対称性を捉えるための必須ツールであり,モビリティモデルの妥当性をテストするためのベンチマークを確立し,幅広い応用分野におけるフィールド理論の利用への扉を開く。
関連論文リスト
- Pretrained Mobility Transformer: A Foundation Model for Human Mobility [11.713796525742405]
textbfPretrained textbfMobility textbfTransformer (PMT)
textbfMobility textbfTransformer (PMT)
textbfPretrained textbfMobility textbfTransformer (PMT)
論文 参考訳(メタデータ) (2024-05-29T00:07:22Z) - Deep Activity Model: A Generative Approach for Human Mobility Pattern Synthesis [11.90100976089832]
我々は,人間の移動性モデリングと合成のための新しい生成的深層学習手法を開発した。
オープンソースのデータを使って、アクティビティパターンとロケーショントラジェクトリの両方を組み込む。
モデルはローカルデータで微調整できるため、さまざまな領域にわたるモビリティパターンを正確に表現することができる。
論文 参考訳(メタデータ) (2024-05-24T02:04:10Z) - Regions are Who Walk Them: a Large Pre-trained Spatiotemporal Model
Based on Human Mobility for Ubiquitous Urban Sensing [24.48869607589127]
本研究では,人体移動データに含まれるリッチな情報を活用するために,トラジェクトリ(RAW)に基づく大規模時空間モデルを提案する。
提案手法は,人間の移動データのみに特色を持たず,ユーザのプロファイリングや地域分析に一定の関連性を示す。
論文 参考訳(メタデータ) (2023-11-17T11:55:11Z) - Priority-Centric Human Motion Generation in Discrete Latent Space [59.401128190423535]
テキスト・ツー・モーション生成のための優先中心運動離散拡散モデル(M2DM)を提案する。
M2DMは、コード崩壊に対処するために、グローバルな自己注意機構と正規化用語を組み込んでいる。
また、各動きトークンの重要度から決定される革新的なノイズスケジュールを用いた動き離散拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-08-28T10:40:16Z) - Spatiotemporal-Augmented Graph Neural Networks for Human Mobility Simulation [35.89805766554052]
本稿では,SRpatio-Augmented gaph Neural Network という,位置の動的時間的効果をモデル化する新しいフレームワークを提案する。
STARフレームワークは、行動対応を捉えるために様々な時間グラフを設計し、異なる場所の居住地をシミュレートする新しいブランチを構築し、最終的にその期間を逆向きに最適化する。
論文 参考訳(メタデータ) (2023-06-15T11:47:45Z) - Urban Regional Function Guided Traffic Flow Prediction [117.75679676806296]
メタデータとして各領域の機能を利用するPOI-MetaBlockという新しいモジュールを提案する。
我々のモジュールはトラフィックフロー予測の性能を大幅に改善し、メタデータを使用する最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-03-17T06:03:49Z) - Motion Transformer with Global Intention Localization and Local Movement
Refinement [103.75625476231401]
動き TRansformer (MTR) は、大域的意図の局所化と局所的な動きの洗練の合同最適化として、動き予測をモデル化する。
MTRは、限界運動予測と関節運動予測の両方において最先端の性能を達成する。
論文 参考訳(メタデータ) (2022-09-27T16:23:14Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - Studying Person-Specific Pointing and Gaze Behavior for Multimodal
Referencing of Outside Objects from a Moving Vehicle [58.720142291102135]
物体選択と参照のための自動車応用において、手指しと目視が広く研究されている。
既存の車外参照手法は静的な状況に重点を置いているが、移動車両の状況は極めて動的であり、安全性に制約がある。
本研究では,外部オブジェクトを参照するタスクにおいて,各モダリティの具体的特徴とそれら間の相互作用について検討する。
論文 参考訳(メタデータ) (2020-09-23T14:56:19Z) - TraLFM: Latent Factor Modeling of Traffic Trajectory Data [16.010576606023417]
そこで我々は,交通トラジェクトリの基盤となる人間の移動パターンをマイニングするための新しい生成モデルTraLFMを提案する。
TraLFMは,(1)人体移動パターンが軌道内の位置の列によって反映される,(2)人体移動パターンが人によって異なる,(3)人体移動パターンが周期的かつ時間とともに変化する,という3つの重要な観察に基づいている。
論文 参考訳(メタデータ) (2020-03-16T04:41:39Z) - Learning to Move with Affordance Maps [57.198806691838364]
物理的な空間を自律的に探索し、ナビゲートする能力は、事実上あらゆる移動型自律エージェントの基本的な要件である。
従来のSLAMベースの探索とナビゲーションのアプローチは、主にシーン幾何学の活用に重点を置いている。
学習可能な余剰マップは探索と航法の両方において従来のアプローチの強化に利用でき、性能が大幅に向上することを示します。
論文 参考訳(メタデータ) (2020-01-08T04:05:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。