論文の概要: Privacy-Aware Randomized Quantization via Linear Programming
- arxiv url: http://arxiv.org/abs/2406.02599v1
- Date: Sat, 1 Jun 2024 18:40:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 23:39:37.250257
- Title: Privacy-Aware Randomized Quantization via Linear Programming
- Title(参考訳): 線形プログラミングによるプライバシーを考慮したランダム化量子化
- Authors: Zhongteng Cai, Xueru Zhang, Mohammad Mahdi Khalili,
- Abstract要約: 偏りがなく、偏りのない量子化機構のファミリーを提案する。
提案するメカニズムは,ベースラインと比較して,より優れたプライバシ・正確性トレードオフを実現することができる。
- 参考スコア(独自算出の注目度): 13.002534825666219
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential privacy mechanisms such as the Gaussian or Laplace mechanism have been widely used in data analytics for preserving individual privacy. However, they are mostly designed for continuous outputs and are unsuitable for scenarios where discrete values are necessary. Although various quantization mechanisms were proposed recently to generate discrete outputs under differential privacy, the outcomes are either biased or have an inferior accuracy-privacy trade-off. In this paper, we propose a family of quantization mechanisms that is unbiased and differentially private. It has a high degree of freedom and we show that some existing mechanisms can be considered as special cases of ours. To find the optimal mechanism, we formulate a linear optimization that can be solved efficiently using linear programming tools. Experiments show that our proposed mechanism can attain a better privacy-accuracy trade-off compared to baselines.
- Abstract(参考訳): GaussianやLaplaceといった異なるプライバシメカニズムは、個々のプライバシを保存するためにデータ分析に広く使用されている。
しかし、それらは主に連続的な出力のために設計されており、個別の値が必要なシナリオには適していない。
近年、差分プライバシーの下で離散的な出力を生成するために様々な量子化機構が提案されているが、結果は偏りがあるか、精度とプライバシーのトレードオフが劣っている。
本稿では,偏りがなく,偏りのない量子化機構のファミリーを提案する。
高い自由度を持ち、既存のメカニズムが我々の特別な場合とみなすことができることを示す。
最適メカニズムを見つけるために,線形プログラミングツールを用いて効率よく解ける線形最適化を定式化する。
実験の結果,提案手法はベースラインよりもプライバシーと精度のトレードオフが良好であることが確認された。
関連論文リスト
- Private Language Models via Truncated Laplacian Mechanism [18.77713904999236]
本稿では,高次元トラカート型ラプラシアン機構と呼ばれる新しいプライベート埋め込み手法を提案する。
提案手法は,従来のプライベート単語埋め込み法に比べて分散度が低いことを示す。
注目すべきは、高いプライバシー体制であっても、私たちのアプローチは、プライベートでないシナリオに比べて、実用性がわずかに低下することです。
論文 参考訳(メタデータ) (2024-10-10T15:25:02Z) - Unified Mechanism-Specific Amplification by Subsampling and Group Privacy Amplification [54.1447806347273]
サブサンプリングによる増幅は、差分プライバシーを持つ機械学習の主要なプリミティブの1つである。
本稿では、メカニズム固有の保証を導出するための最初の一般的なフレームワークを提案する。
サブサンプリングが複数のユーザのプライバシに与える影響を分析する。
論文 参考訳(メタデータ) (2024-03-07T19:36:05Z) - The Symmetric alpha-Stable Privacy Mechanism [0.0]
本稿では,Symmetric alpha-Stable (SaS) 機構の新しい解析法を提案する。
この機構は、畳み込みの下で閉じたまま、純粋に微分プライベートであることを示す。
論文 参考訳(メタデータ) (2023-11-29T16:34:39Z) - Bounded and Unbiased Composite Differential Privacy [25.427802467876248]
差分プライバシ(DP)の目的は、隣接する2つのデータベース間で区別できない出力分布を生成することにより、プライバシを保護することである。
既存のソリューションでは、後処理やトランケーション技術を使ってこの問題に対処しようとしている。
本稿では,合成確率密度関数を用いて有界および非偏りの出力を生成する新しい微分プライベート機構を提案する。
論文 参考訳(メタデータ) (2023-11-04T04:43:47Z) - Adaptive Privacy Composition for Accuracy-first Mechanisms [55.53725113597539]
ノイズ低減機構はますます正確な答えを生み出す。
アナリストは、公表された最も騒々しい、あるいは最も正確な回答のプライバシー費用のみを支払う。
ポスト前のプライベートメカニズムがどのように構成されるかは、まだ研究されていない。
我々は、分析者が微分プライベートとポストプライベートのメカニズムを適応的に切り替えることのできるプライバシーフィルタを開発した。
論文 参考訳(メタデータ) (2023-06-24T00:33:34Z) - Differential Privacy via Distributionally Robust Optimization [8.409434654561789]
非漸近的かつ無条件の最適性を保証するメカニズムのクラスを開発する。
上界 (primal) は実装可能な摂動に対応しており、その準最適性は下界 (dual) で有界である。
数値実験により、我々の摂動は、人工的および標準ベンチマーク問題に関する文献から得られた最も優れた結果よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-04-25T09:31:47Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Differentially Private Estimation of Hawkes Process [81.20710494974281]
本稿では,Hawkesプロセスの離散化表現に基づいて,イベントストリームデータに対する微分プライバシーの厳密な定義を導入する。
次に、2つの微分プライベート最適化アルゴリズムを提案する。これにより、Hawkesプロセスモデルに望ましいプライバシとユーティリティの保証を持たせることができる。
論文 参考訳(メタデータ) (2022-09-15T13:59:23Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Optimal Algorithms for Mean Estimation under Local Differential Privacy [55.32262879188817]
そこで本研究では,PrivUnitが局所的プライベートな乱数化器群間の最適分散を実現することを示す。
また,ガウス分布に基づくPrivUnitの新たな変種も開発しており,数学的解析に適しており,同じ最適性保証を享受できる。
論文 参考訳(メタデータ) (2022-05-05T06:43:46Z) - Bounding, Concentrating, and Truncating: Unifying Privacy Loss
Composition for Data Analytics [2.614355818010333]
アナリストが純粋なDP、境界範囲(指数的なメカニズムなど)、集中的なDPメカニズムを任意の順序で選択できる場合、強いプライバシー損失バウンダリを提供する。
また、アナリストが純粋なDPと境界範囲のメカニズムをバッチで選択できる場合に適用される最適なプライバシー損失境界を提供する。
論文 参考訳(メタデータ) (2020-04-15T17:33:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。