A Brief Overview of Optimization-Based Algorithms for MRI Reconstruction Using Deep Learning
- URL: http://arxiv.org/abs/2406.02626v1
- Date: Mon, 3 Jun 2024 21:52:50 GMT
- Title: A Brief Overview of Optimization-Based Algorithms for MRI Reconstruction Using Deep Learning
- Authors: Wanyu Bian,
- Abstract summary: The integration of deep learning algorithms offers significant potential for optimizing MRI reconstruction processes.
Despite the growing body of research in this area, a comprehensive survey of optimization-based deep learning models tailored for MRI reconstruction has yet to be conducted.
This review addresses this gap by presenting a thorough examination of the latest optimization-based algorithms in deep learning specifically designed for MRI reconstruction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Magnetic resonance imaging (MRI) is renowned for its exceptional soft tissue contrast and high spatial resolution, making it a pivotal tool in medical imaging. The integration of deep learning algorithms offers significant potential for optimizing MRI reconstruction processes. Despite the growing body of research in this area, a comprehensive survey of optimization-based deep learning models tailored for MRI reconstruction has yet to be conducted. This review addresses this gap by presenting a thorough examination of the latest optimization-based algorithms in deep learning specifically designed for MRI reconstruction. The goal of this paper is to provide researchers with a detailed understanding of these advancements, facilitating further innovation and application within the MRI community.
Related papers
- fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Optimization-Based Deep learning methods for Magnetic Resonance Imaging
Reconstruction and Synthesis [0.0]
This dissertation aims to provide advanced nonsmooth variational models (Magnetic Resonance Image) MRI reconstruction, efficient learnable image reconstruction algorithms, and deep learning methods for MRI reconstruction and synthesis.
The first part introduces a novel based deep neural network whose architecture is inspired by proximal gradient descent for a variational model.
The second part is a substantial extension of the preliminary work in the first part by solving the calibration-free fast pMRI reconstruction problem in a discrete-time optimal framework.
The third part aims at developing a generalizable Magnetic Resonance Imaging (MRI) reconstruction method in the metalearning framework.
arXiv Detail & Related papers (2023-03-02T18:59:44Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions [0.688204255655161]
A popular approach to accelerated MRI is to undersample the k-space data.
While undersampling speeds up the scan procedure, it generates artifacts in the images, and advanced reconstruction algorithms are needed to produce artifact-free images.
In this work, MRI reconstruction from undersampled data was carried out using an optimized neural network using a novel evolutionary neural architecture search algorithm.
arXiv Detail & Related papers (2022-06-15T03:42:18Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - AI-based Reconstruction for Fast MRI -- A Systematic Review and
Meta-analysis [33.16099059188649]
Compressed sensing (CS) has been playing a key role in accelerating the magnetic resonance imaging (MRI) acquisition process.
Deep neural networks and CS algorithms are being integrated to redefine the state of the art of fast MRI.
arXiv Detail & Related papers (2021-12-23T17:56:41Z) - Fine-grained MRI Reconstruction using Attentive Selection Generative
Adversarial Networks [0.0]
We propose a novel attention-based deep learning framework to provide high-quality MRI reconstruction.
We incorporate large-field contextual feature integration and attention selection in a generative adversarial network (GAN) framework.
arXiv Detail & Related papers (2021-03-13T09:58:32Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
Deep learning methods have been shown to produce superior performance on MR image reconstruction.
These methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations.
We propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy.
arXiv Detail & Related papers (2021-03-03T03:04:40Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Deep Attentive Wasserstein Generative Adversarial Networks for MRI
Reconstruction with Recurrent Context-Awareness [5.474237208776356]
The performance of compressive sensing-based MRI (CS-MRI) reconstruction is affected by its slow iterative procedure and noise-induced artefacts.
We propose a new deep learning-based CS-MRI reconstruction method to fully utilise the relationship among sequential MRI slices by coupling Wasserstein Generative Adversarial Networks (WGAN) with Recurrent Neural Networks.
arXiv Detail & Related papers (2020-06-23T11:50:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.