論文の概要: Evidentially Calibrated Source-Free Time-Series Domain Adaptation with Temporal Imputation
- arxiv url: http://arxiv.org/abs/2406.02635v2
- Date: Thu, 13 Jun 2024 03:08:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 22:46:45.078866
- Title: Evidentially Calibrated Source-Free Time-Series Domain Adaptation with Temporal Imputation
- Title(参考訳): 時間的インプットによるソースフリー時間領域適応の正当性
- Authors: Mohamed Ragab, Peiliang Gong, Emadeldeen Eldele, Wenyu Zhang, Min Wu, Chuan-Sheng Foo, Daoqiang Zhang, Xiaoli Li, Zhenghua Chen,
- Abstract要約: ソースフリードメイン適応(SFDA)は、ラベル付きソースドメインで事前訓練されたモデルを、ソースデータにアクセスせずにラベルなしのターゲットドメインに適応することを目的としている。
本稿では, 時系列SFDAの新規かつ効果的なアプローチであるMAsk And imPUte(MAPU)を提案する。
ソフトマックス予測に固有の過信問題に対処するために、明らかな不確実性推定を取り入れたE-MAPUも導入する。
- 参考スコア(独自算出の注目度): 38.88779207555418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Source-free domain adaptation (SFDA) aims to adapt a model pre-trained on a labeled source domain to an unlabeled target domain without access to source data, preserving the source domain's privacy. While SFDA is prevalent in computer vision, it remains largely unexplored in time series analysis. Existing SFDA methods, designed for visual data, struggle to capture the inherent temporal dynamics of time series, hindering adaptation performance. This paper proposes MAsk And imPUte (MAPU), a novel and effective approach for time series SFDA. MAPU addresses the critical challenge of temporal consistency by introducing a novel temporal imputation task. This task involves randomly masking time series signals and leveraging a dedicated temporal imputer to recover the original signal within the learned embedding space, bypassing the complexities of noisy raw data. Notably, MAPU is the first method to explicitly address temporal consistency in the context of time series SFDA. Additionally, it offers seamless integration with existing SFDA methods, providing greater flexibility. We further introduce E-MAPU, which incorporates evidential uncertainty estimation to address the overconfidence issue inherent in softmax predictions. To achieve that, we leverage evidential deep learning to obtain a better-calibrated pre-trained model and adapt the target encoder to map out-of-support target samples to a new feature representation closer to the source domain's support. This fosters better alignment, ultimately enhancing adaptation performance. Extensive experiments on five real-world time series datasets demonstrate that both MAPU and E-MAPU achieve significant performance gains compared to existing methods. These results highlight the effectiveness of our proposed approaches for tackling various time series domain adaptation problems.
- Abstract(参考訳): ソースフリードメイン適応(SFDA)は、ラベル付きソースドメインで事前トレーニングされたモデルを、ソースデータにアクセスせずにラベル付きターゲットドメインに適応し、ソースドメインのプライバシを保存することを目的としている。
SFDAはコンピュータビジョンで広く使われているが、時系列分析では探索されていない。
既存のSFDA法は、視覚データのために設計されており、時系列の時間的ダイナミクスを捉えるのに苦労し、適応性能を妨げている。
本稿では, 時系列SFDAの新規かつ効果的なアプローチであるMAsk And imPUte(MAPU)を提案する。
MAPUは、新しい時間的計算タスクを導入することで、時間的一貫性の重要な課題に対処する。
このタスクは、時系列信号をランダムにマスキングし、専用の時間インプタを利用して学習された埋め込み空間内の元の信号を復元し、ノイズの多い生データの複雑さを回避します。
特に、MAPUは時系列SFDAの文脈で時間的一貫性を明示的に扱う最初の方法である。
さらに、既存のSFDAメソッドとシームレスに統合され、柔軟性が向上する。
さらにE-MAPUを導入し,不確実性推定を取り入れ,ソフトマックス予測に固有の過信問題に対処する。
そこで我々は、前向きな深層学習を活用して、より良い校正された事前学習モデルを取得し、目標エンコーダを適用して、サポート外ターゲットサンプルを、ソースドメインのサポートに近い新しい特徴表現にマッピングする。
これによりアライメントが向上し、最終的に適応性能が向上する。
5つの実世界の時系列データセットに対する大規模な実験により、MAPUとE-MAPUの両方が既存の手法と比較して大きな性能向上を達成した。
これらの結果は,様々な時系列領域適応問題に対処するための提案手法の有効性を浮き彫りにした。
関連論文リスト
- Unveiling the Superior Paradigm: A Comparative Study of Source-Free Domain Adaptation and Unsupervised Domain Adaptation [52.36436121884317]
Source-Free Domain Adaptation (SFDA) は、現実のシナリオにおいて、Unsupervised Domain Adaptation (UDA) よりも一般的に優れていることを示す。
SFDAは、時間効率、ストレージ要件、対象とする学習目標、負の移動リスクの低減、過度な適合に対する堅牢性の向上といった利点を提供している。
利用可能なソースデータをマルチSFDA手法に効果的に統合する新しい重み推定法を提案する。
論文 参考訳(メタデータ) (2024-11-24T13:49:29Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Revisiting VAE for Unsupervised Time Series Anomaly Detection: A
Frequency Perspective [40.21603048003118]
変分オートエンコーダ(VAE)は、より優れたノイズ除去能力のために近年人気を集めている。
FCVAEは、グローバルとローカルの両方の周波数特徴を条件付き変分オートエンコーダ(CVAE)の条件に同時に統合する革新的なアプローチを利用する
提案手法は, パブリックデータセットと大規模クラウドシステムを用いて評価され, その結果, 最先端の手法よりも優れた結果が得られた。
論文 参考訳(メタデータ) (2024-02-05T09:06:57Z) - Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation [84.82153655786183]
Informative Data Mining (IDM) と呼ばれる新しいフレームワークを提案し、セマンティックセグメンテーションのための効率的なワンショットドメイン適応を実現する。
IDMは、最も情報性の高いサンプルを特定するために不確実性に基づく選択基準を提供し、迅速に適応し、冗長なトレーニングを減らす。
提案手法は,GTA5/SYNTHIAからCityscapesへの適応タスクにおいて,既存の手法より優れ,56.7%/55.4%の最先端のワンショット性能を実現している。
論文 参考訳(メタデータ) (2023-09-25T15:56:01Z) - Source-Free Domain Adaptation with Temporal Imputation for Time Series
Data [19.616201184995532]
ソースフリードメイン適応(SFDA)は、ラベル付きソースドメインからラベルなしターゲットドメインへの事前訓練されたモデルを、ソースドメインデータにアクセスすることなく適応することを目的としている。
視覚的応用が盛んであるにもかかわらず、SFDAは時系列アプリケーションではほとんど探索されていない。
本稿では,時系列データ,すなわちMAskとimPUteに対して,ソースフリーなドメイン適応をシンプルかつ効果的に行う手法を提案する。
論文 参考訳(メタデータ) (2023-07-14T14:22:03Z) - Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation [62.458968086881555]
連続ビデオドメイン適応(CVDA、Continuous Video Domain Adaptation)は、ソースモデルが個々の変更対象ドメインに適応する必要があるシナリオである。
CVDAの課題に対処するため,遺伝子組み換え型自己知識解離(CART)を用いた信頼性保証ネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-18T16:40:10Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Self-Adaptive Forecasting for Improved Deep Learning on Non-Stationary
Time-Series [20.958959332978726]
SAFは、バックキャストに基づく予測に先立って自己適応段階を統合する」
提案手法は,符号化された表現を進化する分布に効率よく適応させることにより,より優れた一般化を実現する。
時系列データが医療や金融などの非定常性で知られる領域における合成および実世界のデータセットについて、SAFの顕著なメリットを実証する。
論文 参考訳(メタデータ) (2022-02-04T21:54:10Z) - Self-supervised Autoregressive Domain Adaptation for Time Series Data [9.75443057146649]
教師なしドメイン適応(UDA)は、視覚アプリケーションにおけるドメインシフト問題にうまく対処している。
これらの手法は、以下の理由により時系列データのパフォーマンスが制限される可能性がある。
本稿では,これらの制約に対処するための自己監督型自己回帰ドメイン適応(SLARDA)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-29T08:17:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。